Skip to main content
Log in

Effects of concentration of nonionic surfactant and molecular weight of polymers on the morphology of anisotropic polystyrene/poly(methyl methacrylate) composite particles prepared by solvent evaporation method

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The effects of the concentration of polyoxyethylene octylphenyl ether (OP-10) as a nonionic surfactant and the molecular weight of polymers (polystyrene (PS) and poly(methyl methacrylate) (PMMA)) on the morphology of anisotropic PS/PMMA composite particles were investigated. In the case of polymers with lower molecular weight (M w ≈ 6.0 × 104 g/mol), the PS/PMMA composite particles have dimple, via acorn, to hemispherical shapes along with the increase of the OP-10 concentration. On the other hand, when the polymers have higher molecular weight (M w ≈ 3.3 × 105 g/mol), the morphology of PS/PMMA composite particles changed from dimple, via hemispherical, to snowman-like structure while the concentration of OP-10 was increased. Furthermore, thermodynamic analysis was first simply made by spreading coefficients, and the results indicated that both the concentration of OP-10 aqueous solution and the molecular weight of polymers were very important to the final morphology of anisotropic composite particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mischenko MI, Hovenier JW, Travis LD (2000) Light scattering by nonspherical particles: theory, measurements, applications. Academic, San Diego

    Google Scholar 

  2. Larson RG (1998) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  3. Jogun SM, Zukoski CF (1999) J Rheol 43:847

    Article  CAS  Google Scholar 

  4. Glotzer SC (2004) Science 306:419

    Article  CAS  Google Scholar 

  5. Zhang ZL, Horsch MA, Lamm MH, Glotzer SC (2003) Nano Lett 3:1341

    Article  CAS  Google Scholar 

  6. Glotzer SC, Horsch MA, Iacovella CR, Zhang ZL, Chan ER, Zhang X (2005) Curr Opin Colloid Interface Sci 10:287

    Article  CAS  Google Scholar 

  7. Binks BP, Fletcher PDI (2001) Langmuir 17:4708

    Article  CAS  Google Scholar 

  8. Murphy CJ (2002) Science 298:2139

    Article  CAS  Google Scholar 

  9. Pickering SU (1907) J Chem Soc 91:2001

    Google Scholar 

  10. Dinsmore AD, Hsu MF, Nikolaides MG, Marquez M, Bausch AR, Weitz DA (2002) Science 298:1006

    Article  CAS  Google Scholar 

  11. Bink BP, Clint JH (2002) Langmuir 18:1270

    Article  Google Scholar 

  12. Jana NR, Gearheart L, Murphy CJ (2001) J Phys Chem B 105:4065

    Article  CAS  Google Scholar 

  13. Jin R, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Science 294:1901

    Article  CAS  Google Scholar 

  14. Okubo M, Katsuta Y, Matsumoto T (1980) J Polym Sci Poly Lett Ed 18:481

    Article  CAS  Google Scholar 

  15. Okubo M, Yamada A, Matsumoto T (1980) J Polym Sci Polym Chem Ed 16:3219

    Article  Google Scholar 

  16. Okubo M, Ando M, Yamada A, Katsuta Y, Matsumoto T (1981) J Polym Sci Polym Lett Ed 19:143

    Article  CAS  Google Scholar 

  17. Morgan LW (1982) J Appl Polym Sci 27:2033

    Article  CAS  Google Scholar 

  18. Okubo M, Katsuta Y, Matsumoto T (1982) J Polym Sci Polym Lett Ed 20:45

    Article  CAS  Google Scholar 

  19. Lee DI, Ishikawa T (1983) J Polym Sci Polym Chem Ed 21:147

    Article  CAS  Google Scholar 

  20. Min TI, Klein A, El-aasser MS, Vanderhoff JW (1983) J Polym Sci Polym Lett Ed 21:2845

    CAS  Google Scholar 

  21. Dimonie V, El-aasser MS, Klein A, Vanderhoff JW (1984) J Polym Sci Polym Chem Ed 22:2197

    Article  CAS  Google Scholar 

  22. Muroi S, Hashimoto H, Hosoi K (1984) J Polym Sci Polym Chem Ed 22:1365

    Article  CAS  Google Scholar 

  23. Cho I, Lee KW (1985) J Appl Polym Sci 30:1903

    Article  CAS  Google Scholar 

  24. Merkel MP, Dimonie VL, El-aasser MS, Vanderhoff JW (1987) J Polym Sci A Polym Chem 25:1755

    Article  CAS  Google Scholar 

  25. Okubo M, Ikegami K, Yamamoto Y (1989) Colloid Polym Sci 267:193

    Article  CAS  Google Scholar 

  26. Lee S, Rudin A (1989) Makromol Chem Rapid Commun 10:655

    Article  CAS  Google Scholar 

  27. Sheu HR, El-aasser MS, Vanderhoff JW (1990) J Polym Sci A Polym Chem 28:629

    Article  CAS  Google Scholar 

  28. Sheu HR, El-aasser MS, Vanderhoff JW (1990) J Polym Sci A Polym Chem 28:653

    Article  CAS  Google Scholar 

  29. Okubo M (1990) Makromol Chem Macromol Symp 35/36:307

    Google Scholar 

  30. Shen S, El-aasser MS, Dimonie VL, Vanderhoff JW, Sudol ED (1991) J Polym Sci A Polym Chem 29:857

    Article  CAS  Google Scholar 

  31. Lee S, Rudin A (1992) J Polym Sci A Polym Chem 30:2211

    Article  CAS  Google Scholar 

  32. Jonsson JE, Hassander H, Tornell B (1994) Macromolecules 27:1932

    Article  Google Scholar 

  33. Dimonie VL, Daniels ES, Shaffer OL, El-Aasser MS (1997) Emulsion polymerization and emulsion polymers. In: Lovell PA, El-Aasser MS (eds) Wiley, New York, Chapter 9, pp 293–326

  34. Rajatapiti P, Dimonie VL, El-aasser MS, Vratsanos MS (1997) J Appl Polym Sci 63:205

    Article  CAS  Google Scholar 

  35. Karlsson O, Hassander H, Wesslen B (1997) J Appl Polym Sci 63:1543

    Article  CAS  Google Scholar 

  36. Okubo M, Saito N, Fujibayashi T (2005) Colloid Polym Sci 283:691

    Article  CAS  Google Scholar 

  37. Okubo M, Saito N, Kagari Y (2006) Langmuir 22:9397

    Article  Google Scholar 

  38. Ahmad H, Saito N, Kagawa Y, Okubo M (2007) Langmuir 24:688

    Article  Google Scholar 

  39. Saito N, Nakatsuru R, Kagari Y, Okubo M (2007) Langmuir 23:11506

    Article  CAS  Google Scholar 

  40. Tanaka T, Nakatsuru R, Kagari Y, Saito N, Okubo M (2008) Langmuir 24:12267

    Article  CAS  Google Scholar 

  41. Karlsson OJ, Hassander H, Wesslen B (2000) J Appl Polym Sci 77:297

    Article  CAS  Google Scholar 

  42. Stubbs JM, Sundberg DC (2006) J Appl Polym Sci 102:945

    Article  Google Scholar 

  43. Chen YC, Dimonie V, El-Aasser MS (1992) J Appl Polym Sci 46:691

    Article  CAS  Google Scholar 

  44. Sundberg DC, Durant YG (2003) Polym React Eng 11:379

    Article  CAS  Google Scholar 

  45. Torza S, Mason SG (1970) J Colloid Interface Sci 33:67

    Article  CAS  Google Scholar 

  46. Siow KS, Patterson D (1973) J Phys Chem 77:356

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the National Natural Science Foundation of China (nos. 50573070 and 50773073) and Program for Changjiang Scholars and Innovative Research Team in University for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mozhen Wang or Xuewu Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, X., Wang, M., Ji, X. et al. Effects of concentration of nonionic surfactant and molecular weight of polymers on the morphology of anisotropic polystyrene/poly(methyl methacrylate) composite particles prepared by solvent evaporation method. Colloid Polym Sci 287, 819–827 (2009). https://doi.org/10.1007/s00396-009-2036-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2036-x

Keywords

Navigation