Colloid and Polymer Science

, Volume 287, Issue 5, pp 609–614

The thermolysis behavior of Ag/PAMAMs nanocomposites

  • Zheng Peng
  • Jianmin Zhang
  • Xiuguo Sun
  • Jinhui Yang
  • Jianzhi Diao
Short Communication

Abstract

Ag/polyamidoamine (PAMAM) nanocomposites were produced by photoreduction of relevant metallic salts in different generations of PAMAM (PAMAMs) methanol solutions under room temperature and ambient pressure. The obtained Ag nanoparticles were quite uniform in size with a diameter of about 15 nm. Thermogravimetric analysis (TGA) results showed that the amount of Ag nanoparticles could well affect the thermal stability of PAMAMs. As the mass ratio of Ag nanoparticles to PAMAMs increased, the weight-losing ratios decreased. Meanwhile, TGA curves also indicated that the thermal behavior of Ag/PAMAMs was greatly different in the two stages of low (130~280 °C) and high temperature (280~450 °C) range; the loading of Ag nanoparticles mainly influences the thermal stability of PAMAMs in high temperature region (280~450 °C). Moreover, the multistage decomposition profile of derivative thermal gravimetry curves suggested that there might contain some intermediate Ag/PAMAMs type of composites.

Keywords

PAMAMs Ag nanoparticle Thermolysis 

References

  1. 1.
    Nicolais L, Carotenuto G (2005) Metal-Polymer Nanocomposites. Wiley InterScience, New York, pp 1–2, Ch.1Google Scholar
  2. 2.
    Nicolais L, Carotenuto G (2005) Metal-Polymer Nanocomposites. Wiley Interscience, New York, pp 37–71, Ch.2Google Scholar
  3. 3.
    Verne E, Di Nunzio S et al (2005) Surface characterization of silver-doped bioactive glass. BiomateriaIs 26(25):5111–5119CrossRefGoogle Scholar
  4. 4.
    Shanmugam S, Viswanathan B, Varadarajan TK (2006) A novel single step chemical route for noble metal nanoparticles embedded organic-inorganic composite films. Mat Chem Phys 95(1):51–55CrossRefGoogle Scholar
  5. 5.
    Nalwa HS (2002) Nanostructured Materials and Nanotechnology. Academic, California, pp 40–66, Ch.1Google Scholar
  6. 6.
    Raveendran P, Goyal A (2006) Stabilization and growth of silver nanocrystals in dendritic polyol dispersions. Mat Lett 60:897–900CrossRefGoogle Scholar
  7. 7.
    Sun YY, Wang D (2007) Synthesis of silver (nano)particle under hyperbranched poly(amido amine) s. J Appl Polym Sci 103:3701–3705CrossRefGoogle Scholar
  8. 8.
    Nicolais L, Carotenuto G (2005) Metal-Polymer Nanocomposites. Wiley InterScience, New York, Ch.1, 2–24, Ch.4, 139–149Google Scholar
  9. 9.
    Wang LM, Chen DJ (2004) “One-pot” fabrication of Ag/PMMA "shell/core" nanocomposites by chemical reduction method. Chem Lett 8:1010–1011CrossRefGoogle Scholar
  10. 10.
    Lei ZL, Fan YH (2006) Preparation of silver nanocomposites stabilized by an amphiphilic block copolymer under ultrasonic irradiation. Mat Lett 60:2256–2260CrossRefGoogle Scholar
  11. 11.
    Zhou Y, Yu SH et al (1999) A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Adv Mater 11(10):850–853CrossRefGoogle Scholar
  12. 12.
    Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydrate Polym 65:430–434CrossRefGoogle Scholar
  13. 13.
    Naylor AM, Goddard WA, Kiefer GE, Tomalia DA (1989) Starburst dendrimers. 5. Molecular shape control. J Am Chem Soc 111(6):2339–2341CrossRefGoogle Scholar
  14. 14.
    Jensen AW, Maru BS, Zhang X (2005) Preparation of fullerene-shell dendrimer-core nanoconjugates. Nano Lett 5:1171–1173CrossRefGoogle Scholar
  15. 15.
    Zhao MQ, Crooks RM, Sun L (1998) Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc 120(19):4877–4878CrossRefGoogle Scholar
  16. 16.
    Ottaviani MF, Valluzzi R, Balogh L (2002) Internal structure of silver-poly(amidoamine) dendrimer complexes and nanocomposites. Macromolecules 35:5105–5115CrossRefGoogle Scholar
  17. 17.
    Hideo T, Zhao MQ et al (1998) Preparation and characterization of dendrimer monolayers and dendrimer–alkanethiol mixed monolayers adsorbed to gold. J Am Chem Soc 120(18):4492–4501CrossRefGoogle Scholar
  18. 18.
    Tomalia DAB, Dewald J, Hall M et al (1985) New class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132CrossRefGoogle Scholar
  19. 19.
    Singh N, Khanna PK (2007) In situ synthesis of silver nano-particles in polymethylmethacrylate. Mater Chem Phys 104:367–372CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Zheng Peng
    • 1
  • Jianmin Zhang
    • 1
  • Xiuguo Sun
    • 1
  • Jinhui Yang
    • 1
  • Jianzhi Diao
    • 1
  1. 1.School of Material Science and EngineeringShijiazhuang Railway InstituteShijiazhuangPeople’s Republic of China

Personalised recommendations