Colloid and Polymer Science

, Volume 287, Issue 2, pp 139–146 | Cite as

Crystallization of titania ultra-fine particles from peroxotitanic acid in aqueous solution in the present of polymer and incorporation into poly(methyl methacylate) via dispersion in organic solvent

  • Shuhei Yamada
  • Zhifeng Wang
  • Emiko Mouri
  • Kohji Yoshinaga
Original Contribution


We report a novel strategy for incorporation of titanium dioxide (TiO2) particles, which were crystallized from peroxotitanic acid in the presence of hydrophilic polymer by hydrothermal treatment in aqueous solution, into poly(methyl methacrylate) (PMMA) via dispersion into chloroform. Dispersion of TiO2 particles into chloroform was achieved by solvent change from water to chloroform in aid of amphiphilic polymer dispersant, poly(N-vinyl pyrrolidone) (PVP), poly(N-vinyl pyrrolidone-co-methyl methacrylate) (PVP-co-PMMA), poly(N-vinyl pyrrolidone-block-methyl methacrylate) (PVP-b-PMMA) through azeotropical removal of water. Incorporation of TiO2 particles into PMMA was carried out by a casting process of a mixture of TiO2 particles dispersed with PVP154-b-PMMA156 in chloroform and PMMA on a glass substrate. Resultant hybrid film containing TiO2 less than 10 wt.% showed high transparency in visible region attributable to homogeneous dispersion into PMMA matrix. The refractive index of the hybrid films increased with TiO2 content and agreed with the calculated values.


Titania Particle Dispersion Dispersant Refractive index 


  1. 1.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1185–1189CrossRefGoogle Scholar
  2. 2.
    Yoshida M, Prasad PN (1996) Chem Mater 8:235–241CrossRefGoogle Scholar
  3. 3.
    Wang J, Montville D, Gonsalves KE (1999) J Appl Polym Sci 72:1851–1868CrossRefGoogle Scholar
  4. 4.
    Lu CL, Cui ZC, Li Z, Yang B, Shen JC (2003) J Mater Chem 13:526–530CrossRefGoogle Scholar
  5. 5.
    Lu CL, Cui ZC, Guan C, Guan JQ, Yang B, Shen JC (2003) Macromol Mater Eng 288:717–723CrossRefGoogle Scholar
  6. 6.
    Nakayama N, Hayashi T (2007) J Appl Polym Sci 105:3662–3672CrossRefGoogle Scholar
  7. 7.
    Nussbaumer RJ, Caseri W, Tervoort T, Smith P (2002) J Nanopart Res 4:319–323CrossRefGoogle Scholar
  8. 8.
    Wang Y, Zhang S, Wu XH (2004) Nanotechnology 15:1162–1165CrossRefGoogle Scholar
  9. 9.
    Cozzoli PD, Kornowski A, Weller H (2003) J Am Chem Soc 125:14539–14548CrossRefGoogle Scholar
  10. 10.
    Wu XD, Wang DP, Yang SR (2000) J Colloid Interface Sci 222:37–40CrossRefGoogle Scholar
  11. 11.
    Nakayama N, Hayashi T (2008) Colloid Surface A 317:543–550CrossRefGoogle Scholar
  12. 12.
    Chemseddine A, Moritz A (1999) Eur J Inorg Chem 1999:235–245Google Scholar
  13. 13.
    Moritz T, Reiss J, Diesner K, Su D, Chemseddine A (1997) J Phys Chem B 101:8052–8053CrossRefGoogle Scholar
  14. 14.
    Sugimoto T, Okada K, Itoh H (1997) J Colloid Interface Sci 193:140–143CrossRefGoogle Scholar
  15. 15.
    Sugimoto T, Okada K, Itoh H (1998) J Disper Soc Technol 19:143–161CrossRefGoogle Scholar
  16. 16.
    Kanie K, Sugimoto T (2004) Chem Commun 14:1584–1585CrossRefGoogle Scholar
  17. 17.
    Yoshinaga K, Yamauchi M, Maruyama D, Mouri E, Koyanagi T (2005) Chem Lett 34:1094–1095CrossRefGoogle Scholar
  18. 18.
    Spurr RA, Myers H (2005) Anal Chem 29:760–762CrossRefGoogle Scholar
  19. 19.
    Sugimoto T, Zhou XP, Muramatsu A (2003) J Colloid Interface Sci 259:53–61CrossRefGoogle Scholar
  20. 20.
    Chen H, Kou H, Yang Z, Ni W, Wang J (2008) Langmuir 24:5233–5237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Shuhei Yamada
    • 1
  • Zhifeng Wang
    • 2
  • Emiko Mouri
    • 1
  • Kohji Yoshinaga
    • 1
    • 3
  1. 1.Department of Applied Chemistry, Faculty of EngineeringKyushu Institute of TechnologyKitakyushuJapan
  2. 2.College of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouChina
  3. 3.Department of Applied ChemistryKyushu Institute of TechnologyKitakyushuJapan

Personalised recommendations