Colloid and Polymer Science

, Volume 286, Issue 14–15, pp 1667–1673 | Cite as

Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties

Short Communication


Microwave synthesis has been applied to prepare stable silver nanofluids in ethanol by reduction of AgNO3 with polyvinylpyrrolidone (PVP), used as stabilizing agent, having Ag concentrations of 1% by volume. The nanofluids were characterized by UV-vis spectroscopy, Fourier transform infrared, energy-dispersive X-ray spectroscopy, and transmission electron microscopy and systematically investigated for refractive index, electrical and thermal conductivity, and viscosity for different polymer concentrations. The size of nanoparticles was found to be in the range of 30–60 nm for two different salt-to-PVP ratios. For higher concentration of polymer in nanofluid, nanoparticles were 30 nm in size showing increase in thermal conductivity but a decrease in viscosity and refractive index, which is due to the polymer structure around nanoparticles. Thermal conductivity measurements of nanofluids show substantial increment in the thermal conductivity of nanofluid relative to the base fluid and nonlinear enhancement over the 283–323 K temperature range. Rheology of nanofluids was studied at room temperature showing effect of polymer on viscosity and confirming the Newtonian behavior of nanofluid.


Silver nanofluid Microwave synthesis Thermal conductivity PVP Viscosity Rheology 



Authors are thankful to Vice Chancellor, Defense Institute of Advanced Technology (DIAT), Deemed University, Girinagar, Pune, India, for granting permission to publish this work. The authors sincerely appreciate the keen interest of Shree V.C. Janu Chemistry Department (DIAT) in the present work. Authors are also thankful to AFMC Pune, India, for TEM of samples.


  1. 1.
    Choi S, Siginer D, Wang H (1995) ASME (NewYork) 231:99–105Google Scholar
  2. 2.
    Phelan E, Bhattacharya P, Prasher S, Prasad V, Jaluria Y, Chen G (2005) Annu Rev Heat Transf 14:255–275Google Scholar
  3. 3.
    Lee S, Choi S, Li S, Eastman A (1999) J Heat Transfer 121:280–289CrossRefGoogle Scholar
  4. 4.
    Masuda H, Ebata A, Teramae K, Hishinuma N, Bussei N (1993) Japan 7(4):227–233Google Scholar
  5. 5.
    Eastman A, Choi S, Li S, Thompson J, Lee S (1997) Material Research Society Symposium Proceedings, Pittsburgh, PA, vol. 457, pp 3–11Google Scholar
  6. 6.
    Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q (2002) J Appl Phys 91(7):4568–4572CrossRefGoogle Scholar
  7. 7.
    Xuan Y, Le Q (2000) Int J Heat Fluid Flow 21:58–64CrossRefGoogle Scholar
  8. 8.
    Keblinski P, Phillpot R, Choi S, Eastman A (2002) Int J Heat Mass Transfer 45:855–863CrossRefGoogle Scholar
  9. 9.
    Chopkar M, Kumar S, Bhandar R, Das K, Manna I (2007) Mat Sci Engg B 139:141–148CrossRefGoogle Scholar
  10. 10.
    Das K, Putra N, Thiesen P, Roetzel W (2003) J Heat Transfer 125:567–574CrossRefGoogle Scholar
  11. 11.
    Patel E, Das K, Sundararajan T, Pradeep T (2005) Pramana-J Phys 65(5):863–869CrossRefGoogle Scholar
  12. 12.
    Patel E, Das K, Sundararajan T, Sreekumaran A, George B, Pradeep T (2003) Appl Phys Lett 83(14):2931–2933CrossRefGoogle Scholar
  13. 13.
    Jang SP, Choi SUS (2004) Appl Phys Lett 84(21):4316–4318CrossRefGoogle Scholar
  14. 14.
    Prasher S, Bhattacharya P, Phelan E (2006) Trans ASME 28:588–595CrossRefGoogle Scholar
  15. 15.
    Gandhi S (2007) Current Science 92(6):717–718Google Scholar
  16. 16.
    Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Appl Phys Lett 87:153107CrossRefGoogle Scholar
  17. 17.
    Yang B, Han ZH (2006) Appl Phys Lett 89:083111CrossRefGoogle Scholar
  18. 18.
    Kostic M (2006) Multifunctional nanocomposites. In: Proc. MN2006, vol. 17036, pp 1–9Google Scholar
  19. 19.
    Yulong D, Alias H, Wen D, Williams A (2006) Int J Heat Mass Transf 49:240–250CrossRefGoogle Scholar
  20. 20.
    Chen H, Ding Y, Tan C (2007) New J Phys 9:367–391CrossRefGoogle Scholar
  21. 21.
    Lu K, Kessler C (2006) J Mat Sci 41:5613–5618CrossRefGoogle Scholar
  22. 22.
    Zhu H, Lin Y, Yin Y (2007) J Colloid Int Sci 277:100–103CrossRefGoogle Scholar
  23. 23.
    Liu M, Lin MC, Tsai CY, Wang CC (2006) Int J Heat Mass Transf 49:3028–3033CrossRefGoogle Scholar
  24. 24.
    Grijalva A, Urbina R, Silva J, Borja M, Barraza F, Amarillas A (2007) Mat Res Bull 43:90–96Google Scholar
  25. 25.
    Ayyappan S, Gopalan RS, Subbanna GN, Rao CNR (1997) J Mater Res 12:398–401CrossRefGoogle Scholar
  26. 26.
    Nagasaka Y, Nagashima A (1981) J Phys E: Sci Instrum 14:1435–1439CrossRefGoogle Scholar
  27. 27.
    Shervani Z, Ikushima Y, Sato M, Kawanami H, Hakuta Y, Yokoyama T, Nagase T, Aramaki K (2007) Colloid Polym Sci 007:1784–1788Google Scholar
  28. 28.
    Yan Y, Kang S, Mu J (2007) Appl Surface Sci 253:4677–4679CrossRefGoogle Scholar
  29. 29.
    Puchalski M, Dąbrowski P, Olejniczak W, Krukowski P, Kowalczyk P, Polański P (2007) Materials Science-Poland 25(2):473–478Google Scholar
  30. 30.
    Kalimuthu K, Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Colloids Surf B: Biointerfaces 65:150–153CrossRefGoogle Scholar
  31. 31.
    Petravic J (2005) J Chem Phys 123:174503CrossRefGoogle Scholar
  32. 32.
    Chopkar M, Das P, Manna I (2006) Scripta Materialia 55:549–552CrossRefGoogle Scholar
  33. 33.
    Chon HC, Kihm K, Lee SP, Choi SUS (2005) Appl Phys Lett 87:153107–153111CrossRefGoogle Scholar
  34. 34.
    Maxwell JC (1891) A treatise on electricity and magnetism. Clarendon, UKGoogle Scholar
  35. 35.
    Wang X, Mujumdar A (2007) Int J Thermal Sci 46:1–19CrossRefGoogle Scholar
  36. 36.
    Kathy L, Kessler C (2006) J Mater Sci 41:5613–5618CrossRefGoogle Scholar
  37. 37.
    Chang H, Jwo C, Lo C, Tsung T, Kao M, lin H (2006) Rev Adv Mater Sci 10:128–132Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Defence Institute of Advanced TechnologyDeemed UniversityPuneIndia

Personalised recommendations