Colloid and Polymer Science

, Volume 286, Issue 13, pp 1545–1552

The effect of fructose derived carbon shells on the plasmon resonance and stability of silver nanoparticles

  • John C. Heckel
  • Fatimah F. Farhan
  • George Chumanov
Original Contribution


Carbon nanoparticles between 10 and 50 nm in diameter and carbon shells of various thickness around silver nanoparticles were synthesized by the hydrothermal reaction of fructose. The effect of the carbon shells on the plasmon resonance of the silver nanoparticles and their stability in sodium chloride solutions was investigated. The shell thickness can be adjusted to have insignificant damping of the plasmon resonance and provide stabilization of the particles in solutions with high ionic strength. Hydrazine–carbonyl cross-linking reactions were performed to link fluorescent dye molecules to carbonyl groups on the carbon shell surface.


Core shell Silver nanoparticle Carbon nanoparticle Hydrothermal Fructose 


  1. 1.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters; Springer Series in Materials Science 25. Springer, New YorkGoogle Scholar
  2. 2.
    Evanoff DD Jr, Chumanov G (2005) ChemPhysChem 6:1221–1231CrossRefGoogle Scholar
  3. 3.
    Daniels JK, Caldwell TP, Christensen KA, Chumanov G (2006) Anal Chem 78:1724–1729CrossRefGoogle Scholar
  4. 4.
    Kinnan MK, Chumanov G (2007) J Phys Chem C 111:18010–18017CrossRefGoogle Scholar
  5. 5.
    Lukomska J, Malicka J, Gryczynski I, Lakowicz JR (2004) J Fluor 14:417–423CrossRefGoogle Scholar
  6. 6.
    Aslan K, Wu M, Lakowicz JR, Geddes CD (2007) J Am Chem Soc 129:1524–1525CrossRefGoogle Scholar
  7. 7.
    Lee S, Kim S, Choo J, Shin SY, Lee YH, Choi HY, Ha S, Kang K, Oh CH (2007) Anal Chem 79:916–922CrossRefGoogle Scholar
  8. 8.
    Tai S-P, Wu Y, Shieh D-B, Chen L-J, Lin K-J, Yu C-H, Chu S-W, Chang C-H, Shi X-Y, Wen Y-C, Lin K-H, Liu T-M, Sun C-K (2007) Adv Mater 19:4520–4523CrossRefGoogle Scholar
  9. 9.
    Huang T, Nallathamby PD, Gillet D, Xu XN (2007) Anal Chem 79:7708–7718CrossRefGoogle Scholar
  10. 10.
    Hu Q, Tay L-L, Noestheden M, Pezacki JP (2007) J Am Chem Soc 129:14–15CrossRefGoogle Scholar
  11. 11.
    Evanoff DD Jr, White RL, Chumanov G (2004) J Phys Chem B 108:1522–1524CrossRefGoogle Scholar
  12. 12.
    Kumbhar A, Chumanov G (2004) J Nanosci Nanotech 4:299–303CrossRefGoogle Scholar
  13. 13.
    Quaroni L, Chumanov G (1999) J Am Chem Soc 121:10642–10643CrossRefGoogle Scholar
  14. 14.
    Perez-Mendez M, Marsal-Berenguel R, Sanchez-Cortes S (2004) App Spec 58:562–569CrossRefGoogle Scholar
  15. 15.
    Li T, Park HG, Lee HS, Choi SH (2004) Nanotech 15:S660–S663CrossRefGoogle Scholar
  16. 16.
    Logothetidis S (2007) Diamond Related Mat 16:1847–1857CrossRefGoogle Scholar
  17. 17.
    Yao C, Shin Y, Wang L, Windisch CF Jr, Samuels WD, Arey BW, Wang C, Risen WM Jr, Exarhos GJ (2007) J Phys Chem C 111:15141–15145CrossRefGoogle Scholar
  18. 18.
    Sun X, Li Y (2004) Angew Chem Int Ed 43:597–601CrossRefGoogle Scholar
  19. 19.
    Wang Q, Li H, Chen L, Huang X (2001) Carbon 39:2211–2214CrossRefGoogle Scholar
  20. 20.
    Titirici MM, Thomas A, Yu S-H, Muller J-O, Antonietti M (2007) Chem Mater 19:4205–4212CrossRefGoogle Scholar
  21. 21.
    Wang Z, Xiao P, He N (2006) Carbon 44:3277–3284CrossRefGoogle Scholar
  22. 22.
    Caiulo N, Yu CH, Yu KMK, Lo CCH, Oduro W, Thiebaut B, Bishop P, Tsang SC (2007) Adv Funct Mater 17:1392–1396CrossRefGoogle Scholar
  23. 23.
    Yu S-H, Cui X, Li L, Li K, Yu B, Antonietti M, Colfen H (2004) Adv Mater 16:1636–1640CrossRefGoogle Scholar
  24. 24.
    Sun X, Li Y (2005) Langmuir 21:6019–6024CrossRefGoogle Scholar
  25. 25.
    Yu JC, Hu X, Li Q, Zhang L (2005) Chem Commun 21:2704–2706CrossRefGoogle Scholar
  26. 26.
    Fang Z, Tang K, Lei S, Li T (2006) Nanotechnology 17:3008–3011CrossRefGoogle Scholar
  27. 27.
    Luo LB, Yu SH, Qian HS, Gong JY (2006) Chem Commun 7:793–795CrossRefGoogle Scholar
  28. 28.
    Evanoff DD Jr, Chumanov G (2004) J Phys Chem B 108:13948–13956CrossRefGoogle Scholar
  29. 29.
    Kuster BFM, Terbens LM (1976) Carbohydr Res 54:159–164Google Scholar
  30. 30.
    Kuster BFM, van der Baan HS (1976) Carbohydr Res 54:165–176CrossRefGoogle Scholar
  31. 31.
    Kuster BFM, Temmink HMG (1976) Carbohydr Res 54:185–191CrossRefGoogle Scholar
  32. 32.
    Antal MJ, Mok WS (1990) Carbohydr Res 199:91–109CrossRefGoogle Scholar
  33. 33.
    Schwan J, Ulrich S, Batori V, Ehrhardt H, Silva SRP (1996) J Appl Phys 80:440–447CrossRefGoogle Scholar
  34. 34.
    Henglein A (1993) J Phys Chem 97:679–682CrossRefGoogle Scholar
  35. 35.
    Takenaka A, Shibata M, Sasada Y (1986) Acta Crystallogr C42:1336–1340Google Scholar
  36. 36.
    Fields R, Dixon HBF (1971) Biochem J 121:587–589Google Scholar
  37. 37.
    Ahn B, Rhee SG, Stadtman ER (1987) Anal Biochem 161:245–257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • John C. Heckel
    • 1
  • Fatimah F. Farhan
    • 1
  • George Chumanov
    • 1
  1. 1.Department of Chemistry, H. L. Hunter LaboratoryClemson UniversityClemsonUSA

Personalised recommendations