Advertisement

Colloid and Polymer Science

, Volume 286, Issue 12, pp 1403–1409 | Cite as

Conductivity of flowing polyaniline suspensions in electric field

  • Martin Stěnička
  • Vladimír PavlínekEmail author
  • Petr Sáha
  • Natalia V. Blinova
  • Jaroslav Stejskal
  • Otakar Quadrat
original Contribution

Abstract

The formation of chain structures by polarized polyaniline (PANI) particles suspended in silicone oil in the electric field has been monitored by recording suspension conductivity in the course of time. For that purpose, three types of PANI particles differing in the conductivity (3.1 × 10−3, 1.7 × 10−1, and 2.0 × 10−1 S cm−1) have been chosen out of a series of nine samples prepared by controlled protonation of PANI base in orthophosphoric acid solutions. Relaxation times reflecting this process and characterizing the rate of the response to the electric field decreased with particle conductivity, indicating a higher polarizability of particles. At the same time, the maximum conductivity of suspension increased as a consequence of the electric and shear forces acting on the particles. In the shear fields, shorter relaxation times appeared than at rest. The simultaneous measurement of the shear stress confirmed that the conductivity investigation can reliably characterize the development of electrorheological structures.

Keywords

Electrorheology Polyaniline Conducting polymer Protonation degree Conductivity Relaxation time 

Notes

Acknowledgment

The authors thank the Ministry of Education, Youth and Sports of the Czech Republic (MSM—7088352101) and the Grant Agency of the Czech Republic (202/06/0419) for financial support.

References

  1. 1.
    Winslow WM (1947) US Patent 2,417,850Google Scholar
  2. 2.
    Block H, Kelly JP (1988) Electro-rheology. J Phys D Appl Phys 21:1661–1677CrossRefGoogle Scholar
  3. 3.
    Jordan TC, Shaw MT (1989) Electrorheology. IEEE Trans Electron Insul 24:849–878CrossRefGoogle Scholar
  4. 4.
    Block H, Kelly JP, Qin A, Watson T (1990) Materials and mechanisms in electrorheology. Langmuir 6:6–14CrossRefGoogle Scholar
  5. 5.
    Parthasarathy M, Klingenberg DJ (1996) Electrorheology: mechanisms and models. Mater Sci Eng R 17:57–103CrossRefGoogle Scholar
  6. 6.
    Hao T (2001) Electrorheological fluids. Adv Mater 13:1847–1857CrossRefGoogle Scholar
  7. 7.
    Hao T (2002) Electrorheological suspensions. Adv Colloid Interface Sci 97:1–35CrossRefGoogle Scholar
  8. 8.
    Quadrat O, Stejskal J (2006) Polyaniline in electrorheology. J Ind Eng Chem 12:352–361Google Scholar
  9. 9.
    Choi HJ, Lee JH, Cho MS, Jhon MS (1999) Electrorheological characterization of semiconducting polyaniline suspension. Polym Eng Sci 39:493–499CrossRefGoogle Scholar
  10. 10.
    Lengálová A, Pavlínek V, Sáha P, Quadrat O, Kitano T, Stejskal J (2003) Influence of particle concentration on the electrorheological efficiency of polyaniline suspensions. Eur Polym J 39:641–645CrossRefGoogle Scholar
  11. 11.
    Pavlínek V, Sáha P, Kitano T, Stejskal J, Quadrat O (2005) The effect of polyaniline layer deposited on silica particles on electrorheological and dielectric properties of their silicone-oil suspensions. Physica A 353:21–28CrossRefGoogle Scholar
  12. 12.
    Sung JH, Cho MS, Choi HJ, Jhon MS (2004) Electrorheology of semiconducting polymers. J Ind Eng Chem 10:1217–1229Google Scholar
  13. 13.
    Stejskal J, Kratochvíl P, Jenkins AD (1996) The formation of polyaniline and the nature of its structures. Polymer 37:367–369CrossRefGoogle Scholar
  14. 14.
    Hong CH, Choi HJ (2007) Shear stress and dielectric analysis of H3PO4 doped polyaniline based electrorheological fluid. J Macromol Sci B Phys 46:683–692CrossRefGoogle Scholar
  15. 15.
    Choi HJ, Cho MS, To K (1998) Electrorheological and dielectric characteristics of semiconducting polyaniline–silicone oil suspensions. Physica A 254:272–279CrossRefGoogle Scholar
  16. 16.
    Chaudhari HK, Kelkar DS (1997) Investigation of structure and electrical conductivity in doped polyaniline. Polym Int 42:380–384CrossRefGoogle Scholar
  17. 17.
    Quadrat O, Stejskal J, Kratochvíl P, Klason C, McQueen D, Kubát J, Sáha P (1998) Electrical properties of polyaniline suspensions. Synth Met 97:37–42CrossRefGoogle Scholar
  18. 18.
    Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74:857–867CrossRefGoogle Scholar
  19. 19.
    Blinova NV, Stejskal J, Trchová M, Prokeš J (2008) Control of polyaniline conductivity and contact angles by partial protonation. Polym Int 57:66–69CrossRefGoogle Scholar
  20. 20.
    Klingenberg DJ, van Swol F, Zukoski CF IV (1991) The small shear rate response of electrorheological suspensions. 1. Simulation in the point-dipole limit. J Chem Phys 94:6160–6169CrossRefGoogle Scholar
  21. 21.
    Marshall L, Zukoski CF IV, Goodwin JW (1989) Effects of electric fields on the rheology of non-aqueous concentrated suspensions. J Chem Soc Faraday Trans 85:2785–2795CrossRefGoogle Scholar
  22. 22.
    Wu CW, Conrad H (1997) Dielectric and conduction effects in non-ohmic electrorheological fluids. Phys Rev E 56:5789–5797CrossRefGoogle Scholar
  23. 23.
    Lee JH, Cho MS, Choi HJ, Jhon MS (1999) Effect of polymerization temperature on polyaniline based electrorheological suspensions. Colloid Polym Sci 277:73–76CrossRefGoogle Scholar
  24. 24.
    Cho MS, Cho YH, Choi HJ, Jhon MS (2003) Synthesis and electrorheological characteristics of polyaniline-coated poly(methyl methacrylate) microsphere: size effect. Langmuir 19:5875–5881CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Martin Stěnička
    • 1
  • Vladimír Pavlínek
    • 1
    Email author
  • Petr Sáha
    • 1
  • Natalia V. Blinova
    • 2
  • Jaroslav Stejskal
    • 2
  • Otakar Quadrat
    • 2
  1. 1.Faculty of TechnologyTomas Bata University in ZlínZlínCzech Republic
  2. 2.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations