Colloid and Polymer Science

, Volume 286, Issue 12, pp 1361–1368 | Cite as

Aerosol assisted synthesis of silica/phenolic resin composite mesoporous hollow spheres

Original Contribution

Abstract

Hollow spheres of phenolic resin/silica composite are synthesized by macroscopic phase separation of a sorbitan monooleate surfactant Span 80 during aerosol-assisted spraying. The cavity can be evolved from multiple compartments to single hollow cavity with the increase of Span 80 content. The composite shell becomes mesoporous due to the release of small molecules after thermal treatment above 350 °C. After further thermal treatment at a higher temperature for example 900 °C in nitrogen or 1,450 °C in argon, the carbon/silica composite hollow spheres or crystalline silicon carbide hollow spheres are derived, respectively. Compared to the pure phenolic resin-based carbon spheres, thermal stability of the carbon-based composite spheres in air is essentially improved by the introduction of inorganic component silica. The carbon-based composite hollow spheres combine both performances of easy mass transportation through macropores and high specific surface area of mesopores, which will be promising to support catalysts for fuel cells.

Keywords

Hollow spheres Mesoporous Carbon Composite Template 

Notes

Acknowledgment

We thank financial support by the National Natural Science Foundation of China (50573083, 50521302, 50733004, and 20720102041), Chinese Academy of Sciences and the China Ministry of Science and Technology (2006CB605300 and 2003CB615600) is acknowledged.

Supplementary material

396_2008_1904_MOESM1_ESM.doc (27 kb)
Table S1 The average pore size dependence on the weight ratio of the phenolic resin to silica and treatment temperature (DOC 27 KB)
396_2008_1904_MOESM2_ESM.doc (331 kb)
Figure S1 SEM images of the representative phenolic resin/silica composite films with different Span 80 content after being calcined at 450 °C in nitrogen: a no Span 80; b 100 wt.% in respect to P123 (DOC 338 KB)
396_2008_1904_MOESM3_ESM.doc (521 kb)
Figure S2 TEM images of the representative phenolic resin/silica composite films with different Span 80 content after being calcined at 450 °C in nitrogen: a no Span 80; b 100 wt.% in respect to P123. (DOC 533 KB)
396_2008_1904_MOESM4_ESM.doc (72 kb)
Figure S3 a Nitrogen adsorption/desorption isotherms and b the corresponding pore size distribution of the representative phenolic resin/silica composite films with different Span 80 content after being calcined at 450 °C in nitrogen. filled diamond No Span 80; filled star 100 wt.% in respect to P123 (DOC 74 KB)
396_2008_1904_MOESM5_ESM.doc (435 kb)
Figure S4 TGA traces of some representative samples: a the as-prepared phenolic resin/silica composite spheres MP-SA; b, c the surfactants P123 and Span 80 (DOC 445 KB)
396_2008_1904_MOESM6_ESM.doc (733 kb)
Figure S5 FT-IR spectra of some representative samples: a, b surfactants P123 and Span 80; c the as-prepared phenolic resin/silica composite spheres MP-SA; d the mesoporous phenolic resin/silica spheres after the spheres in Fig. 1a are calcined at 450 °C in nitrogen (DOC 750 KB)
396_2008_1904_MOESM7_ESM.doc (1.1 mb)
Figure S6 Morphology of some representative samples: a SEM image of the spheres formed in the absence of Span 80, inset the TEM image; b, c TEM images of the composite spheres with 400, 10 wt.% Span 80 in respect to P123, respectively; d SEM image of the composite spheres as the recipe 1 prepared but without HCl vapor; e SEM image of the spheres MP-SC, inset the TEM image (DOC 1197 KB)
396_2008_1904_MOESM8_ESM.doc (169 kb)
Figure S7 FTIR spectra of the spheres MP-SA a before and b after washing by ethanol to remove the surfactants (DOC 173 KB)
396_2008_1904_MOESM9_ESM.doc (1.5 mb)
Figure S8 The Pyr–GC–MS chromatograph data of the samples measured at 445 °C. a the as-prepared composite spheres MP-SA after being treated at 180 °C for cross-linking and washed by ethanol to remove the surfactants; b the pure phenolic resin after being calcined at 180 °C for cross-linking (DOC 1594 KB)
396_2008_1904_MOESM10_ESM.doc (854 kb)
Figure S9 29 Si CP MAS NMR spectra of the as-prepared composite spheres MP-SA after being treated at 180 °C for cross-linking and washed by ethanol to remove the surfactants (DOC 873 KB)
396_2008_1904_MOESM11_ESM.doc (60 kb)
Figure S10 Nitrogen adsorption/desorption isotherms of spheres with different composition. The difference in composition is noted in Table 1 (DOC 61 KB)
396_2008_1904_MOESM12_ESM.doc (74 kb)
Figure S11 Raman spectrum of the hollow carbon/silica composite spheres derived from the spheres in Fig. 1a (DOC 76 KB)
396_2008_1904_MOESM13_ESM.doc (34 kb)
Figure S12 SEM-based energy-dispersive X-ray spectroscopy of the carbon spheres derived from the spheres MP-SA-900 (DOC 34 KB)
396_2008_1904_MOESM14_ESM.doc (168 kb)
Figure S13 FTIR spectra of some representative samples: a the carbon/silica spheres derived from the spheres in Fig. 1a; b the silicon carbide spheres derived from the spheres in Fig. 1a after calcination at 1,450 °C in argon (DOC 172 KB)

References

  1. 1.
    Anderson M, Holmes WS, Hanif MN, Cundy CS (2000) Angew Chem Int Ed 39:2707–2710CrossRefGoogle Scholar
  2. 2.
    Smått J, Schunk S, Lindén M (2003) Chem Mater 15:2354–2361CrossRefGoogle Scholar
  3. 3.
    Zhong Z, Yin Y, Gates B, Xia YN (2000) Adv Mater 12:206–209CrossRefGoogle Scholar
  4. 4.
    Caruso F (2000) Chem Eur J 6:413–419CrossRefGoogle Scholar
  5. 5.
    Wilcox DL, Bernat MT, Kelleman D, Cochran JK (1994) Hollow and solid spheres and microspheres: science and technology associated with their fabrication and application, vol 372. Materials Research Society Proceedings, PittsburghGoogle Scholar
  6. 6.
    Vallet-Regi M, Rámila A, del Real RP, Pérez-Pariente J (2001) Chem Mater 3:308–311CrossRefGoogle Scholar
  7. 7.
    Fisher KA, Huddersman KD, Taylor MJ (2003) Chem Eur J 9:5873–5878CrossRefGoogle Scholar
  8. 8.
    Zhu YF, Shi JL, Li YS, Chen HR, Shen WH, Dong XP (2005) Micropor Mesopor Mater 85:75–81CrossRefGoogle Scholar
  9. 9.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710–712CrossRefGoogle Scholar
  10. 10.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  11. 11.
    Firouzi A, Atef F, Oertli AG, Stucky GD, Chmelka BF (1997) J Am Chem Soc 119:3596–3610CrossRefGoogle Scholar
  12. 12.
    Zhao DY, Feng J, Huo Q, Melosh NG, Frederickson H, Chmelka BF, Stucky GD (1998) Science 279:548–552CrossRefGoogle Scholar
  13. 13.
    Li YS, Shi JL, Hua ZL, Chen HR, Ruan ML, Yan DS (2003) Nano Lett 3:609–612CrossRefGoogle Scholar
  14. 14.
    Choi M, Kleitz F, Liu DN, Lee HY, Ahn W, Ryoo R (2005) J Am Chem Soc 127:1924–1932CrossRefGoogle Scholar
  15. 15.
    Asefa T, MacLachlan MJ, Coombs N, Ozin GA (1999) Nature 402:867–871Google Scholar
  16. 16.
    Pang J, John VT, Loy DA, Yang ZZ, Lu YF (2005) Adv Mater 17:704––707CrossRefGoogle Scholar
  17. 17.
    Giunta PR, van de Burgt LJ, Stiegman AE (2005) Chem Mater 17:1234–1240CrossRefGoogle Scholar
  18. 18.
    Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 103:7743–7746CrossRefGoogle Scholar
  19. 19.
    Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) J Am Chem Soc 122:10712–10713CrossRefGoogle Scholar
  20. 20.
    Liu R, Shi Y, Wan Y, Meng Y, Zhang F, Gu D, Chen ZX, Tu B, Zhao DY (2006) J Am Chem Soc 128:11652–11662CrossRefGoogle Scholar
  21. 21.
    Meng Y, Gu D, Zhang FQ, Shi YF, Yang HF, Li Z, Yu CZ, Tu B, Zhao DY (2005) Angew Chem Int Ed 44:7053–7059CrossRefGoogle Scholar
  22. 22.
    Hu QY, Kou R, Pang J, Ward TL, Cai M, Yang ZZ, Lu YF, Tang J (2007) Chem Commun 6:601–603CrossRefGoogle Scholar
  23. 23.
    Yan Y, Zhang FQ, Meng Y, Tu B, Zhao DY (2007) Chem Commun 27:2867–2869CrossRefGoogle Scholar
  24. 24.
    Nishino H, Takahashi H, Sato S, Sodesawa T (2004) J Non-Cryst Solids 333:284–290CrossRefGoogle Scholar
  25. 25.
    Rathod SB, Ward TL (2007) J Mater Chem 17:2329–2335CrossRefGoogle Scholar
  26. 26.
    Nakanishi K, Takahashi R, Nagakane T, Kitayama K, Koheiya N, Shikata H, Soga N (2000) J Sol–Gel Sci Technol 17:191–210CrossRefGoogle Scholar
  27. 27.
    Nakanishi K, Soga N (1992) J Non-Cryst Solids 139:1–13CrossRefGoogle Scholar
  28. 28.
    Vogelaar L, Lammertink RGH, Barsema JN, Nijdam W, Bolhuis-Versteeg LAM, van Rijn CJM, Wessling M (2005) Small 1:645–655CrossRefGoogle Scholar
  29. 29.
    Nakanishi K, Soga N (1992) J Non-Cryst Solids 139:14–24CrossRefGoogle Scholar
  30. 30.
    Kaji H, Nakanishi K, Soga N (1995) J Non-Cryst Solids 181:16–26CrossRefGoogle Scholar
  31. 31.
    Yang M, Ma J, Ding SJ, Meng ZK, Liu JG, Zhao T, Mao LQ, Shi Y, Jin XG, Lu YF, Yang ZZ (2006) Macromol Chem Phys 207:1633–1639CrossRefGoogle Scholar
  32. 32.
    Yang ZX, Xia YD, Mokaya R (2004) Chem Mater 16:3877–3884CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Institute of ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Chemical and Biomolecular Engineering DepartmentUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations