Colloid and Polymer Science

, Volume 286, Issue 8–9, pp 1097–1102 | Cite as

Synthesis of high-quality core–shell quantum dots of CdSe–CdS by means of gradual heating in liquid paraffin

  • Georgi G. Yordanov
  • Hideyuki Yoshimura
  • Ceco D. Dushkin
Short Communication


Here, we report a novel strategy to prepare fluorescent semiconductor quantum dots (QDs) of core–shell type with CdSe–CdS QDs as a model system. Our synthesis was carried out in liquid paraffin, which is a natural, nontoxic, and cheap solvent. We applied a single injection of precursor for the shell growth at low temperature and gradual heating of the reaction mixture after that. By this manner, the Ostwald ripening of the cores was reduced, homogenous nucleation of the shell material was avoided, and highly monodisperse in size core–shell QDs were prepared. Our synthesis method allows working on open air; it is relatively fast and allows fine control over the shell growth process. It leads to the formation of core–shell CdSe–CdS QDs with fluorescence quantum yield as high as 65%. We described the optical properties of core–shell QDs by the model of attenuated quantum confinement.


CdSe CdS CdSe–CdS Core–shell Nanoparticles Nanocrystals Quantum dots Fluorescence Attenuated quantum confinement 



The financial support of the Bulgarian Ministry of Education and Science (Project VUH-09/05) is acknowledged. The partial support from the University of Sofia (Project 016/2007 and Project 089/2008) is also acknowledged. G.Y. and C.D. are thankful also to COST Action D43 (grant COST-STSM-D43-02662).

Supplementary material

396_2008_1886_MOESM1_ESM.doc (141 kb)
ESM 1 (DOC 141 KB)


  1. 1.
    Yoffe AD (1993) Adv In Phys 42(2):173–266CrossRefGoogle Scholar
  2. 2.
    Gaponenko SV (2005) Optical properties of semiconductor nanocrystals. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Chan W, Nie S (1998) Science 281:2016–2018CrossRefGoogle Scholar
  4. 4.
    Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013–2016CrossRefGoogle Scholar
  5. 5.
    Li J, Wang Y, Guo W, Keay J, Mishima T, Johnson M, Peng X (2003) J Am Chem Soc 125:12567–12575CrossRefGoogle Scholar
  6. 6.
    Chang JY, Wang SR, Yang CH (2007) Nanotechnology 18:345602CrossRefGoogle Scholar
  7. 7.
    Steckel J, Zimmer J, Coe-Sullivan S, Stott N, Bulovic V, Bawendi M (2004) Angew Chem Int Ed 43:2154–2158CrossRefGoogle Scholar
  8. 8.
    Hines MA, Guyot-Sionnest P (1996) J Phys Chem 100:468–470CrossRefGoogle Scholar
  9. 9.
    Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) J Am Chem Soc 119:7019–7029CrossRefGoogle Scholar
  10. 10.
    Reiss P, Bleuse J, Pron A (2002) Nano Lett 2:781–784CrossRefGoogle Scholar
  11. 11.
    Dushkin C, Papazova K, Dushkina N, Adachi E (2005) Colloid Polym Sci 284:80–85CrossRefGoogle Scholar
  12. 12.
    Yordanov G, Dushkin C, Gicheva G, Bochev B, Adachi E (2005) Colloid Polym Sci 284:229–232CrossRefGoogle Scholar
  13. 13.
    Yu WW, Peng XG (2002) Angew Chem Int Ed 41:2368–2371CrossRefGoogle Scholar
  14. 14.
    de Mello Donega C, Hickey SG, Wuister SF, Vanmaekelbergh D, Meijerink A (2003) J Phys Chem B 107:489–496CrossRefGoogle Scholar
  15. 15.
    Du H, Fuh RA, Li J, Corkan A, Lindsey JS (1998) Photochem Photobiol 68:141–142Google Scholar
  16. 16.
    Jackson KA (2004) Kinetic processes. Wiley, Weinheim, pp 175–202CrossRefGoogle Scholar
  17. 17.
    Yu W, Qu L, Guo W, Peng X (2003) Chem Mater 15:2854–2860CrossRefGoogle Scholar
  18. 18.
    CRC (1996) CRC Handbook of Chemistry and Physics. CRC, Boca RatonGoogle Scholar
  19. 19.
    Patterson AL (1939) Phys Rev 56:978–982CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Georgi G. Yordanov
    • 1
  • Hideyuki Yoshimura
    • 2
  • Ceco D. Dushkin
    • 1
  1. 1.Laboratory of Nanoparticle Science and Technology, Department of General and Inorganic Chemistry, Faculty of ChemistryUniversity of SofiaSofiaBulgaria
  2. 2.Department of PhysicsMeiji UniversityKanagawaJapan

Personalised recommendations