Colloid and Polymer Science

, Volume 286, Issue 11, pp 1257–1264 | Cite as

Interfacial activity of particles at PI/PDMS and PI/PIB interfaces: analysis based on Girifalco–Good theory

  • Prachi Thareja
  • Sachin S. VelankarEmail author
Original Contribution


Particles that are partially wetted by oil and water are known to adsorb at oil/water interfaces. By the same mechanism, particles that are partially wetted by two immiscible polymers should adsorb at the interface between those two polymers. However, since chemical differences between immiscible polymers are relatively modest, particle adsorption at polymer/polymer interfaces may be expected to be relatively uncommon. We have conducted experiments with several particle types added to two pairs of model polymers, polyisoprene/polydimethylsiloxane and polyisoprene/polyisobutylene. Contrary to our expectation, in every case, particles readily adsorbed at the polymer/polymer interfaces. We evaluated the Girifalco–Good theory as a means to predict the interfacial activity of the particles. The solid surface energy required by the Girifalco–Good theory was assumed to be equal to the critical surface tension, which was then found by float/sink tests. Our results suggest that this approach is not able to predict the observed interfacial activity of particles at polymer/polymer interfaces.


Interfacial tension Pickering emulsion Immiscible polymer blends Wettability Colloids 



We are grateful to Elementis, Dyneon, and Prof. Phule (University of Pittsburgh) for making the particles available for this research. We thank Rhodia Silicones, Soltex Chemicals, and Kuraray America for providing the PDMS, PIB, and PI homopolymers, respectively. We thank Prof. Barnard, University of Pittsburgh, for the use of his pendant drop apparatus for measuring surface tensions, and Hsin-Ling Cheng and Melissa Angeles, University of Pittsburgh, for obtaining SEM images. This research was supported by a CAREER grant CBET-0448845 from the National Science Foundation, USA.


  1. 1.
    Zaikin AE, Mindubaev RY, Arkhireev VP (1999) Colloid J 61:459Google Scholar
  2. 2.
    Zaikin AE, Zharinova EA, Bikmullin RS (2007) Polym Sci Ser A 49:328CrossRefGoogle Scholar
  3. 3.
    Zaikin AE, Karimov RR, Arkhireev VP (2001) Colloid J 63:57CrossRefGoogle Scholar
  4. 4.
    Soares BG, Gubbels F, Jerome R, Teyssie P, Vanlathem E, Deltour R (1995) Polym Bull 35:223CrossRefGoogle Scholar
  5. 5.
    Soares BG, Gubbels F, Jerome R, Vanlathem E, Deltour R (1997) Rubber Chem Technol 70:60Google Scholar
  6. 6.
    Gubbels F, Jerome R, Teyssie P, Vanlathem E, Deltour R, Calderone A, Parente V, Bredas JL (1994) Macromolecules 27:1972CrossRefGoogle Scholar
  7. 7.
    Asai S, Sakata K, Sumita M, Miyasaka K (1992) Polym J (Tokyo, Japan) 24:415Google Scholar
  8. 8.
    Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Polym Bull 25:266CrossRefGoogle Scholar
  9. 9.
    Ray SS, Pouliot S, Bousmina M, Utracki LA (2004) Polymer 45:8403CrossRefGoogle Scholar
  10. 10.
    Hong JS, Namkung H, Ahn KH, Lee SJ, Kim C (2006) Polymer 47:3967CrossRefGoogle Scholar
  11. 11.
    Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539CrossRefGoogle Scholar
  12. 12.
    Hong JS, Kim YK, Ahn KH, Lee SJ, Kim C (2007) Rheol Acta 46:469CrossRefGoogle Scholar
  13. 13.
    Si M, Araki T, Ade H, Kilcoyne ALD, Fisher R, Sokolov JC, Rafailovich MH (2006) Macromolecules 39:4793CrossRefGoogle Scholar
  14. 14.
    Gelfer MY, Song HH, Liu LZ, Hsiao BS, Chu B, Rafailovich M, Si MY, Zaitsev V (2003) J Polym Sci Polym Phys 41:44CrossRefGoogle Scholar
  15. 15.
    Fang Z, Harrats C, Moussaif N, Groeninckx G (2007) J Appl Polym Sci 106:3125CrossRefGoogle Scholar
  16. 16.
    Evgeni Z, Roza T, Narkis M, Arnon S (2006) Polym Compos 27:425CrossRefGoogle Scholar
  17. 17.
    Elias L, Fenouillot F, Majeste JC, Cassagnau P (2007) Polymer 48:6029CrossRefGoogle Scholar
  18. 18.
    Chung HJ, Taubert A, Deshmukh RD, Composto RJ (2004) Europhys Lett 68:219CrossRefGoogle Scholar
  19. 19.
    Huang YJ, Jiang SJ, Li GX, Chen DH (2005) Acta Mater 53:5117CrossRefGoogle Scholar
  20. 20.
    Thareja P, Velankar SS (2007) Rheol Acta 46:405CrossRefGoogle Scholar
  21. 21.
    Chung H, Ohno K, Fukuda T, Composto RJ (2005) Nano Lett 5:1878CrossRefGoogle Scholar
  22. 22.
    Ginzburg VV (2005) Macromolecules 38:2362CrossRefGoogle Scholar
  23. 23.
    Binks BP (2002) Curr Opin Colloid Interface Sci 7:21CrossRefGoogle Scholar
  24. 24.
    Tambe DE, Sharma MM (1993) J Coll Int Sci 157:244CrossRefGoogle Scholar
  25. 25.
    Pickering SU (1907) J Chem Soc Abstracts 91, 92:2001CrossRefGoogle Scholar
  26. 26.
    Luciani A, Champagne MF, Utracki LA (1997) J Polym Sci Part B Polym Phys 35:1393CrossRefGoogle Scholar
  27. 27.
    Xing PX, Bousmina M, Rodrigue D, Kamal MR (2000) Macromolecules 33:8020CrossRefGoogle Scholar
  28. 28.
    Cahn JW (1977) J Chem Phys 66:3667CrossRefGoogle Scholar
  29. 29.
    Bonn D, Ross D (2001) Rep Prog Phys 64:1085CrossRefGoogle Scholar
  30. 30.
    Budkowski A (1999) Interfacial phenomena in thin films. In: Budkowski A, Hamley IW, Koike TT (eds) Phase coexistence and segregation, interfaces/crystallization/viscoelasticity. Springer, Berlin, p 1Google Scholar
  31. 31.
    Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley, New YorkGoogle Scholar
  32. 32.
    Ross S, Morrison ID (1988) Colloidal systems and interfaces. Wiley, New YorkGoogle Scholar
  33. 33.
    Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New YorkGoogle Scholar
  34. 34.
    Fox HW, Zisman WA (1950) J Coll Sci 5:514CrossRefGoogle Scholar
  35. 35.
    Zisman WA (1964) Adv Chem Ser 43:1CrossRefGoogle Scholar
  36. 36.
    Marmur A, Chen W, Zografi G (1986) J Coll Int Sci 113:114CrossRefGoogle Scholar
  37. 37.
    Brandriss S, Margel S (1993) Langmuir 9:1232CrossRefGoogle Scholar
  38. 38.
    Wu S (1974) J Macromol Sci Rev Macromol Chem 10:1Google Scholar
  39. 39.
    Arkles B (1977) Chemtech 7:766Google Scholar
  40. 40.
    Lin SY, Chen LJ, Xyu JW, Wang WJ (1995) Langmuir 11:4159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations