Colloid and Polymer Science

, Volume 286, Issue 8–9, pp 975–981 | Cite as

Synthesis of spherical particles by self-assembly of poly[2-(perfluorooctyl)ethyl acrylate-co-acrylic acid] in supercritical carbon dioxide

Original Contribution

Abstract

Spherical particles were prepared from poly[2-(perfluorooctyl)ethyl acrylateco-acrylic acid] random copolymers (P(POA-co-AA)) by self-assembly in supercritical carbon dioxide (scCO2). The P(POA-co-AA) copolymers with 9:1, 8:2, 7:3, and 6:4 molar ratios of the POA/AA unit completely dissolved in scCO2, however, the solubility was dependent on the POA/AA ratio. The copolymer with the higher AA content had a lower solubility. The scanning electron microscopy (SEM) observations revealed that the spherical particles were obtained in a heterogeneous state at pressures lower than the cloud point pressure. Dynamic light scattering and 1H NMR studies demonstrated that the copolymers formed random copolymer micelles consisting of the shells of the CO2-philic POA units and the cores of the CO2-phobic AA units and main chains. It was found that the formation of spherical particles could be optimized by the manipulation of the CO2 pressure and temperature for the different compositions of the copolymers.

Keywords

Poly[2-(perfluorooctyl)ethyl acrylate-co-acrylic acid] Self-assembly Supercritical carbon dioxide Cloud point pressure Spherical particles CO2 density 

References

  1. 1.
    Koert U, Harding MM, Lehn JM (1990) Nature 346:339CrossRefGoogle Scholar
  2. 2.
    Prakash G, Kool ET (1991) J Chem Soc Chem Commun 1161Google Scholar
  3. 3.
    Oku T, Furusho Y, Takata T (2004) Angew Chem Int Ed 43:966CrossRefGoogle Scholar
  4. 4.
    Harada A, Li J, Kamachi M (1992) Nature 356:325CrossRefGoogle Scholar
  5. 5.
    Dietrich-Buchecker CO, Sauvage JP (1984) J Am Chem Soc 106:3043CrossRefGoogle Scholar
  6. 6.
    Philip D, Stoddart JF (1991) Synlett 445–448Google Scholar
  7. 7.
    Percec V, Ahn CH, Unger G, Yeardley DJP, Moller M, Sheiko SS (1998) Nature 391:161CrossRefGoogle Scholar
  8. 8.
    Quinn EL, Jones CL (1936) Carbon dioxide. Reinhold, New York, p 283Google Scholar
  9. 9.
    Marrone C, Poletto M, Reverchon E, Stassi A (1998) Chem Eng Sci 53:3711CrossRefGoogle Scholar
  10. 10.
    Ramos E, Vbera J, Taalero E, Ibanez E, Reglero G (1998) J Agric Food Chem 46:4011CrossRefGoogle Scholar
  11. 11.
    Bach E, Cleve E, Schuttken J, Schollmeyer E, Rucker AW (2001) Color Tech 117:13CrossRefGoogle Scholar
  12. 12.
    Bakker GL, Hess DW (1998) J Electrochem Soc 145:284CrossRefGoogle Scholar
  13. 13.
    Quadir MA, Snook R, Gilbert RG, DeSimone JM (1997) Macromolecules 30:6015CrossRefGoogle Scholar
  14. 14.
    DeSimone JM, Maury EE, Menceloglu YZ, McClain JB, Romack TJ, Combes JR (1994) Science 265:356CrossRefGoogle Scholar
  15. 15.
    Yoshida E, Nagakubo A (2007) Colloid Polym Sci 285:441CrossRefGoogle Scholar
  16. 16.
    Yoshida E, Nagakubo A (2007) Colloid Polym Sci. 285:1293CrossRefGoogle Scholar
  17. 17.
    Saidi S, Guittard F, Guimon C, Geribaldi S (2005) Macromol Chem Phys 206:1098CrossRefGoogle Scholar
  18. 18.
    Li J, Wang Q, Su C, Chen Q (2007) Eur Polym J 43:2928CrossRefGoogle Scholar
  19. 19.
    Horsfall JA, Lovell KV (2002) Polym Adv Technol 13:381CrossRefGoogle Scholar
  20. 20.
    Marquardt DW (1963) J Soc Ind Appl Math 11:431CrossRefGoogle Scholar
  21. 21.
    Bovey FA, Abere JF, Rathmann GB, Sandberg CL (1955) J Polym Sci 15:520CrossRefGoogle Scholar
  22. 22.
    Sandberg CL, Bovey FA (1955) J Polym Sci 15:553CrossRefGoogle Scholar
  23. 23.
    Markert G (1967) Makromol Chem 103:109CrossRefGoogle Scholar
  24. 24.
    Bevington JC Harris DO (1967) J Polym Sci B 5:799CrossRefGoogle Scholar
  25. 25.
    Miller A (1994) Eur Polym J 30:185CrossRefGoogle Scholar
  26. 26.
    Kobayashi S, Uyama H, Yamamoto I, Matsumoto Y (1990) Polym J 22:759CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Materials ScienceToyohashi University of TechnologyAichiJapan

Personalised recommendations