Colloid and Polymer Science

, Volume 286, Issue 6–7, pp 813–817 | Cite as

Phosphine-free synthesis of metal chalcogenide quantum dots by means of in situ-generated hydrogen chalcogenides

  • Georgi G. Yordanov
  • Hideyuki Yoshimura
  • Ceco D. Dushkin
Short Communication

Abstract

We proved that various organic solvents react with elemental chalcogens (sulfur and selenium) by liberating hydrogen chalcogenide (H2X, X = S, Se) during the phosphine-free hot-matrix synthesis of quantum dots. The in situ-produced H2X reacts further with the metal salt to form the corresponding nanosized metal chalcogenide CdX. The effect of temperature on the rate of H2X generation was quantitatively studied in various organic solvents. We found that the organic amines reduce the reaction temperature of the phosphine-free quantum dots synthesis, being more effective in situ generators of H2S than the other tested organics at relatively low temperatures (140–170 °C).

Keywords

Nanocrystals Quantum dots Hydrogen sulfide Sulfur Paraffin Nanoparticles CdS PbS CdSe PbSe Mechanism Sulfides Selenides 

Supplementary material

396_2008_1840_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1.08 MB)

References

  1. 1.
    Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  2. 2.
    Manna L, Scher EC, Alivisatos AP (2000) J Am Chem Soc 122:12700–12706CrossRefGoogle Scholar
  3. 3.
    Peng Z, Peng X (2001) J Am Chem Soc 123:183–184CrossRefGoogle Scholar
  4. 4.
    Steckel JS, Yen B, Oertel D, Bawendi MG (2006) J Am Chem Soc 128:13032–13033CrossRefGoogle Scholar
  5. 5.
    Liu H, Owen J, Alivisatos AP (2007) J Am Chem Soc 129:305–312CrossRefGoogle Scholar
  6. 6.
    Deng Z, Cao L, Tang F, Zou B (2005) J Phys Chem B 109:16671–16675CrossRefGoogle Scholar
  7. 7.
    Jasieniak J, Bullen C, van Embden J, Mulvaney P (2005) J Phys Chem B 109:20665–20668CrossRefGoogle Scholar
  8. 8.
    Yu WW, Peng XG (2002) Angew Chem Int Ed 41:2368–2371CrossRefGoogle Scholar
  9. 9.
    Yordanov G, Dushkin C, Gicheva G, Bochev B, Adachi E (2005) Colloid Polym Sci 284:229–232CrossRefGoogle Scholar
  10. 10.
    Coleman HJ, Thompson CJ, Rall HT, Smith HM (1953) Ind Eng Chem 45:2706–2710CrossRefGoogle Scholar
  11. 11.
    Pinna N, Weiss K, Urban J, Pileni MP (2001) Adv Mater 13:261CrossRefGoogle Scholar
  12. 12.
    Lianos P, Thomas JK (1986) Chem Phys Lett 125:299CrossRefGoogle Scholar
  13. 13.
    Moriguchi I, Tanaka I, Teraoka Y, Kagawa S (1991) J Chem Soc Chem Commun 1401–1402.Google Scholar
  14. 14.
    Friedmann W (1916) Ber 49:1344–1352Google Scholar
  15. 15.
    Baker RB, Reid EE (1929) J Am Chem Soc 51:1566–1567CrossRefGoogle Scholar
  16. 16.
    Lynn G, Allen M, Beecher BK, Darbyshire RW (1933) Ind Eng Chem 25:916–918CrossRefGoogle Scholar
  17. 17.
    Bacon RF, Boe ES (1945) Ind Eng Chem 37(5):469–474CrossRefGoogle Scholar
  18. 18.
    Bryce WA, Hinshelwood C (1949) J Chem Soc 3379–3387.Google Scholar
  19. 19.
    Farmer EH, Shipley FW (1947) J Chem Soc 1519–1551.Google Scholar
  20. 20.
    Bateman L, Moore CG, Porter M (1958) J Chem Soc 2866–2888Google Scholar
  21. 21.
    Davis RE, Nakshbendi HF (1962) J Am Chem Soc 84:2085–2090CrossRefGoogle Scholar
  22. 22.
    Hodgson WG, Buckler SA, Peters G (1963) J Am Chem Soc 85:543–546CrossRefGoogle Scholar
  23. 23.
    Yordanov G, Adachi E, Dushkin C (2006) Colloids Surf A 289:118–125CrossRefGoogle Scholar
  24. 24.
    Wuyts H, Stewart A (1909) Bull Soc Chim Belg 23:9Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Georgi G. Yordanov
    • 1
  • Hideyuki Yoshimura
    • 2
  • Ceco D. Dushkin
    • 1
  1. 1.Department of General and Inorganic Chemistry, Laboratory of Nanoparticle Science and Technology, Faculty of ChemistryUniversity of SofiaSofiaBulgaria
  2. 2.Department of PhysicsMeiji UniversityKawasakiJapan

Personalised recommendations