Colloid and Polymer Science

, Volume 286, Issue 6–7, pp 747–752 | Cite as

Synthesis and characterization of poly(ethyleneimine) dendrimers

  • Omprakash Yemul
  • Toyoko ImaeEmail author
Original Contribution


Poly(ethyleneimine) (PEI) dendrimers up to the third generation (G3) were prepared by a divergent synthesis method from an ethylenediamine (EDA) core. The amine terminals were bonded with vinylbromide by a Michael addition reaction. Then, the bromide terminals were converted to amine groups using a Gabriel amine synthesis method. PEI dendrimers displayed pH-dependent luminescence, and their emission intensities at pH 6 increased over time. Fluorescence intensities also increased with increasing dendrimer generation from G1 to G3. Air-bubbling in aqueous solutions of dendrimers made to incorporate detectable amount of oxygen in dendrimers. EDA also behaved similarly in luminescence and oxygen incorporation.


Synthesis and Characterization of Poly(ethyleneimine) Dendrimers

Omprakash Yemul and Toyoko Imae*


Poly(ethyleneimine) dendrimer Synthesis Divergent synthesis Michael addition reaction Gabriel amine synthesis Characterization Fluorescence 



The authors are thankful to Dr. Y. Maeda in the Nagoya University for providing NMR spectra of samples. OY is grateful to the 21st Century COE Program (No. 14COEB01-00) for financial support of postdoctoral fellowship.


  1. 1.
    Fréchet JMJ, Hawker CJ (1996) In: Allen G (ed) Comprehensive polymer science, 2nd suppl. Elsevier Science, Pergamon, OxfordGoogle Scholar
  2. 2.
    Fischer M, Vögtle F (1999) Angew Chem Int Ed 38:884CrossRefGoogle Scholar
  3. 3.
    Imae T (2003) In Esumi K, Ueno M (ed) Structure-performance relationships in surfactants: 2nd Edn, Revised and Expanded. Surfactant Science Series volume 112, Marcel Dekker, 525Google Scholar
  4. 4.
    Tomalia DA (2005) Chimica OGGI-Chem Today 23:41Google Scholar
  5. 5.
    Zeng F, Zimmerman SC (1997) Chem Rev 97:1681CrossRefGoogle Scholar
  6. 6.
    Imae T, Funayama K, Aoi K, Tsutsumiuchi K, Okada M, Furusaka M (1999) Langmuir 15:4076CrossRefGoogle Scholar
  7. 7.
    Percec V, Holerca MN (2000) Biomolecules 1:6Google Scholar
  8. 8.
    Adronov A, Frechet JM (2000) Chem Commun 1701Google Scholar
  9. 9.
    Lee I, Athey BD, Wetzel AW, Meixner W, Baker JR Jr (2002) Macromolecules 35:4510CrossRefGoogle Scholar
  10. 10.
    Hedden RC, Bauer BJ (2003) Macromolecules 36:1829CrossRefGoogle Scholar
  11. 11.
    Funayama K, Imae T, Aoi K, Tsutsumiuchi K, Okada M, Furusaka, M, Nagao M (2003) J Phys Chem B 107:1532CrossRefGoogle Scholar
  12. 12.
    Imae T (2004) In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific, 3, p 685Google Scholar
  13. 13.
    Ujihara M, Mitamura K, Torikai N, Imae T (2006) Langmuir 22:3656CrossRefGoogle Scholar
  14. 14.
    Godbey WT, Wu KK, Mikos AG (1999) J Control Release 60:149CrossRefGoogle Scholar
  15. 15.
    Li K, Geng X, Simonsen J, Karchesy J (2004) Int J Adhesion Adhesive 24:327CrossRefGoogle Scholar
  16. 16.
    Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1986) Macromolecules 19:2466CrossRefGoogle Scholar
  17. 17.
    Aoi K, Motoda A, Ohno M, Tsutsumiuchi K, Okada M, Imae T (1997) Polymer J 31:1071CrossRefGoogle Scholar
  18. 18.
    Aoi K, Motoda A, Okada M, Imae T (1997) Macromol Rapid Commun 18:945CrossRefGoogle Scholar
  19. 19.
    Hawker CJ, Fréchet JMJ (1990) J Am Chem Soc 112:7638CrossRefGoogle Scholar
  20. 20.
    Wooley WKL, Hawker CJ, Fréchet JMJ (1991) J Am Chem Soc 113:4252CrossRefGoogle Scholar
  21. 21.
    Wörner C, Mülhaupt R (1993) Angew Chem Int Ed Engl 32:1306CrossRefGoogle Scholar
  22. 22.
    de Brabander-van den Berg EMM, Meijer EW (1993) Angew Chem Int Ed Engle 32:1308CrossRefGoogle Scholar
  23. 23.
    Ikeda Y, Imae T, Hao J, Iida M, Kitan T (2000) Langmuir 16:7618CrossRefGoogle Scholar
  24. 24.
    Pistolis G, Malliaris A, Paleos CM, Tsiourvas D (1997) Langmuir 13:5870CrossRefGoogle Scholar
  25. 25.
    Jockusch S, Ramirez J, Sanghvi K, Nociti R, Turro NJ, Tamalia DA (1999) Macromolecules 32:4419CrossRefGoogle Scholar
  26. 26.
    Wade DA, Torres PA, Tucker SA (1999) Anal Chim Acta 397:17CrossRefGoogle Scholar
  27. 27.
    Sideratou Z, Tsiouras D, Paleos CM (2000) Langmuir 16:1766CrossRefGoogle Scholar
  28. 28.
    Richter-Egger DL, Tesfai A, Tucker SA (2001) Anal Chem 73:5743CrossRefGoogle Scholar
  29. 29.
    Varnavski O, Ispasoiu RG, Balogh L, Tomalia D, Goodson T III (2001) J Chem Phys 114:1962CrossRefGoogle Scholar
  30. 30.
    Larson CL, Tucker SA (2001) Appl Spectrosc 55:679CrossRefGoogle Scholar
  31. 31.
    Lee WI, Bae Y, Bard AJ (2004) J Am Chem Soc 126:8358CrossRefGoogle Scholar
  32. 32.
    Wang D, Imae T (2004) J Am Chem Soc 126:13204CrossRefGoogle Scholar
  33. 33.
    Wang D, Imae T (2007) J Colloid Interface Sci 306:222CrossRefGoogle Scholar
  34. 34.
    Wu D, Liu Y, He C, Goh SH (2005) Macromolecules 38:9906CrossRefGoogle Scholar
  35. 35.
    Kirchner K, Merget N, Schmidt C (1974) Chem Ing Tech 46:661CrossRefGoogle Scholar
  36. 36.
    Patai S (Ed) (1982) The chemistry of amino, nitroso and nitro compounds and their derivatives, part 2. Patai series, Wiley, New YorkGoogle Scholar
  37. 37.
    Blaschko H (1953) Enzymic Brit Med Bull 9:146Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Research Center for Materials ScienceNagoya UniversityChikusaJapan

Personalised recommendations