Advertisement

Colloid and Polymer Science

, Volume 286, Issue 4, pp 365–376 | Cite as

Structural and dynamical characterization of poly-gamma-glutamic acid-based cross-linked nanoparticles

  • Judit Éva Fleischer Radu
  • Levente Novak
  • John F. Hartmann
  • Neda Beheshti
  • Anna-Lena Kjøniksen
  • Bo Nyström
  • János BorbélyEmail author
Original Contribution

Abstract

This work describes the formation of water-soluble hydrophilic nanoparticles from biosynthetic poly-γ-glutamic acid (PGA). Nanoparticles were formed by cross-linking using 2,2′-(ethylenedioxy) diethylamine in the presence of water-soluble carbodiimide. The structure was determined by nuclear magnetic resonance spectroscopy and the particle size by transmission electron microscopy (TEM), size exclusion chromatography (SEC), and dynamic light-scattering (DLS) measurements. The results from TEM, SEC, and DLS reveal that the particle size depends on the ratio of cross-linking. Particle size values measured by TEM were between 20 and 90 nm. Formation of cross-linked nanoparticles results in a dramatic viscosity drop compared to the viscosity of the corresponding solution of the parent PGA. The viscosity and DLS experiments disclose an intriguing interplay between intrachain and interchain cross-linking of the polymer chains, depending on the cross-linker density and polymer concentration. The SEC measurements show that the retention time of the major portion of particles increase because of the higher cross-linking ratio. At moderate cross-linker concentration, intramolecular cross-linking is the dominant process, whereas at higher cross-linker densities, the interpolymer cross-linking plays an important role. As a result, large clusters are also formed.

Keywords

Poly-gamma-glutamic acid Nanoparticles Cross-linking DLS Rheology 

Notes

Acknowledgment

This work was supported by RET (Grant of Regional University Knowledge Center) contract numbers (RET-06/423/2004 and RET-06/432/2004) and in part by ElizaNor Polymer LLC, USA. B. N. gratefully acknowledges support from the Norwegian Research Council through a NANOMAT project (158550/431). Authors acknowledge the fermentation facilities of Dr. Levente Karaffa (Department of Genetics, University of Debrecen).

References

  1. 1.
    Langer R, Tirrell DA (2004) Nature 428:487CrossRefGoogle Scholar
  2. 2.
    Bastioli C (1998) Macromol Symp 135:193Google Scholar
  3. 3.
    Ivánovics G, Erdos LZ (1937) Immunitatsforschung 90:5Google Scholar
  4. 4.
    Kocianova S, Vuong C, Yao Y, Voyich JM, Fischer ER, DeLeo FR, Otto M (2005) J Clin Invest 115:688Google Scholar
  5. 5.
    Bovarnick M (1942) J Biol Chem 145:415Google Scholar
  6. 6.
    Kubota H, Nambu Y, Endo T (1993) J Polym Sci A Polym Chem 31:2877CrossRefGoogle Scholar
  7. 7.
    Williams WJ, Thorne CB (1954) J Biol Chem 210:203Google Scholar
  8. 8.
    Zanuy D, Aleman C, Munoz-Guerra S (1998) Int J Biol Macromol 23:175CrossRefGoogle Scholar
  9. 9.
    Xu H, Jiang M, Li H, Lu D, Quyang P (2005) Proc Biochem 40:519CrossRefGoogle Scholar
  10. 10.
    Nagai T, Koguchi K, Ito Y (1997) J Agric Food Chem 46:891Google Scholar
  11. 11.
    Ashiuci M, Tani K, Soda K, Misono H (1999) J Biochem 123:1156Google Scholar
  12. 12.
    Hara T, Ueda S (1982) Agric Biol Chem 46:2275Google Scholar
  13. 13.
    Hara T, Fujio Y, Ueda S (1982) J Appl Biochem 4:112Google Scholar
  14. 14.
    Fan K, Gonzales D, Sevoian M (1996) J Environ Polym Degrad 4:253CrossRefGoogle Scholar
  15. 15.
    Gonzales D, Fan K, Sevoian M (2000) J Polym Sci A Polym Chem 34:2019CrossRefGoogle Scholar
  16. 16.
    Kunioka M (2004) Macromol Biosci 4:324CrossRefGoogle Scholar
  17. 17.
    Obst M, Steinbuchel A (2004) Biomacromolecules 5:1166CrossRefGoogle Scholar
  18. 18.
    Li C (2004) Adv Drug Deliv Rev 54:695CrossRefGoogle Scholar
  19. 19.
    Shih IL, Van YT (2001) Biores Technol 79:207CrossRefGoogle Scholar
  20. 20.
    Oppermann-Sanio FB, Steinbuchel A (2002) Naturwissenschaften 89:11CrossRefGoogle Scholar
  21. 21.
    Shah DT, McCartly SP, Gross RA (1992) ACS Polym Prepr 33:488Google Scholar
  22. 22.
    Munoz-Guerra S, Melis J, Perey-Camero G, Bou JJ, Congregado F (1998) ACS Polym Prepr 39:138Google Scholar
  23. 23.
    Crescenzi V, D’Alani M, Palleschi C, Petragallo T (1994) ACS Polym Prepr 35:407Google Scholar
  24. 24.
    Borbely M, Nagasaki Y, Borbely J, Fan K, Bhogle A, Sevoian M (1994) Polym Bull 32:127CrossRefGoogle Scholar
  25. 25.
    Melis J, Morillo M, Martinez de Ilarduja A, Munoz-Guerra S (2001) Polymer 42:9319CrossRefGoogle Scholar
  26. 26.
    Kunioka M (1995) Appl Microbiol Biotechnol 44:501CrossRefGoogle Scholar
  27. 27.
    Sidman KR, Schwope AD (1980) Membr Sci 7:277CrossRefGoogle Scholar
  28. 28.
    Shih IL, Van YT, Chang YN (2002) Enzyme Microbial Technol 31:213CrossRefGoogle Scholar
  29. 29.
    Krause WE, Bellomo EG, Colby RH (2001) Biomacromolecules 2:65CrossRefGoogle Scholar
  30. 30.
    Starkweather ME, Muthukumar M, Hoagland DA (1999) Macromolecules 32:6837CrossRefGoogle Scholar
  31. 31.
    Du G, Yang G, Qu Y, Chen J, Lun S (2005) Proc Biochem 40:2143CrossRefGoogle Scholar
  32. 32.
    Thorne CB, Gomez CG, Noyes HE, Housewright RD (1954) J Bacteriol 68:307CrossRefGoogle Scholar
  33. 33.
    Maleki A, Kjøniksen AL, Nyström B (2005) J Phys Chem B 109:12329CrossRefGoogle Scholar
  34. 34.
    Kjøniksen AL, Nyström B, Lindman B (1998) Langmuir 14:5039CrossRefGoogle Scholar
  35. 35.
    Lauten RA, Nyström B (2003) Colloids Surf A Physicochem Eng Asp 219:45CrossRefGoogle Scholar
  36. 36.
    Nyström B, Thuresson K, Lindman B (1995) Langmuir 11:1994CrossRefGoogle Scholar
  37. 37.
    Park H, Robinson JR (1987) Pharm Res 4:457CrossRefGoogle Scholar
  38. 38.
    Riley RG, Smart JD, Tsibouklis J, Dettmar PW, Hampson F, Davis JA, Grant Kelly G, Wilber WR (2001) Int J Pharm 217:87CrossRefGoogle Scholar
  39. 39.
    Kjøniksen AL, Laukkanen A, Galant C, Knudsen KD, Tenhu H, Nyström B (2005) Macromolecules 38:948CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Judit Éva Fleischer Radu
    • 1
  • Levente Novak
    • 1
  • John F. Hartmann
    • 2
  • Neda Beheshti
    • 3
  • Anna-Lena Kjøniksen
    • 3
  • Bo Nyström
    • 3
  • János Borbély
    • 1
    • 4
    Email author
  1. 1.Department of Colloid and Environmental ChemistryUniversity of DebrecenDebrecenHungary
  2. 2.ElizaNor Polymer LLCPrincetonUSA
  3. 3.Department of ChemistryUniversity of OsloOsloNorway
  4. 4.BBS NanotechnologyDebrecenHungary

Personalised recommendations