Colloid and Polymer Science

, 285:1733 | Cite as

Organic–inorganic nanocomposites prepared from fluoro-aramid and silica

  • Muhammad Ilyas Sarwar
  • Sonia Zulfiqar
  • Zahoor Ahmad
Short Communication


Fluoro-aramid-based sol/gel-derived nanocomposites were synthesized by condensing a mixture of 4,4′-(hexafluoro-isopropylidene)dianiline and 1,3-phenylenediamine with terephthaloylchloride (TPC) in dimethylacetamide. TPC was added in slight excess to produce amide chains with carbonyl chloride end groups and then replaced with alkoxy groups using aminophenyltrimethoxysilane to develop bonding with the silica network. Mechanical, dynamic mechanical thermal, water absorption and morphological measurements were carried out on the thin hybrid films. Increase in the tensile strength and modulus was observed as compared to pristine polyamide. The thermal decomposition temperature was found in the range of 400–500 °C. The water absorption was found to be reduced with higher silica content. The glass transition temperature and the storage moduli increased with increasing silica concentration. The maximum increase in the Tg value (345 °C) was observed with 20 wt% silica. Scanning electron microscopy revealed the uniform distribution of silica in the matrix with an average particle size ranging from 8 to 50 nm.


Aramid Nanocomposites Sol–gel process Stress-strain curves Glass transition temperature Morphology 


  1. 1.
    Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic, BostonGoogle Scholar
  2. 2.
    Hench LL, West JK (1990) Chem Rev 90:33CrossRefGoogle Scholar
  3. 3.
    Mark JE (1992) J Appl Polym Sci Appl Polym Symp 50:273CrossRefGoogle Scholar
  4. 4.
    Mark JE (1993) J Inorg Organomet Polym 1:431CrossRefGoogle Scholar
  5. 5.
    Schmidt H (1994) J Sol Gel Sci Technol 1:217CrossRefGoogle Scholar
  6. 6.
    Betrabet SC, Wilkes GL (1994) J Inorg Organomet Polym 4:343CrossRefGoogle Scholar
  7. 7.
    Schmidt H, Kasemann R, Burkhart T, Wagner G, Arpac E, Geiter E (1995) ACS Symp Ser 585:331Google Scholar
  8. 8.
    Mascia L (1995) Trends Polym Sci 3:61Google Scholar
  9. 9.
    Gaw K, Suzuki H, Kakimoto M, Imai Y (1995) J Photopolym Sci Technol 8:307Google Scholar
  10. 10.
    Kita H, Saiki H, Tanaka K, Okamoto K (1995) J Photopolym Sci Technol 8:315Google Scholar
  11. 11.
    Mark JE, Wang S, Ahmad Z (1995) Macromol Chem Symp 98:731Google Scholar
  12. 12.
    Wang S, Ahmad Z, Mark JE (1993) Polym Bull 31:323CrossRefGoogle Scholar
  13. 13.
    Ahmad Z, Wang S, Mark JE (1993) Polym Prepr (ACS Div Polym Chem) 34:745Google Scholar
  14. 14.
    Ahmad Z, Sarwar MI, Mark JE (1997) J Mater Chem 7:259CrossRefGoogle Scholar
  15. 15.
    Ahmad Z, Sarwar MI, Mark JE (1997) J Appl Polym Sci 63:1345CrossRefGoogle Scholar
  16. 16.
    Ahmad Z, Sarwar MI, Wang S, Mark JE (1997) Polymer 38:4523CrossRefGoogle Scholar
  17. 17.
    Ahmad Z, Sarwar MI, Mark JE (1998) J Appl Polym Sci 70:297CrossRefGoogle Scholar
  18. 18.
    Rehman HU, Sarwar MI, Ahmad Z, Krug H, Schmidt H (1997) J Non-Cryst Solids 211:105CrossRefGoogle Scholar
  19. 19.
    Ahmad Z, Sarwar MI, Krug H, Schmidt H (1997) Die Angew Makromol Chemie 248:139CrossRefGoogle Scholar
  20. 20.
    Ahmad Z, Sarwar MI, Krug H, Schmidt H (1998) Intern J Polym Mater 39:127CrossRefGoogle Scholar
  21. 21.
    Wang S, Ahmad Z, Mark JE (1994) Polym Mater Sci Eng 70:305Google Scholar
  22. 22.
    Wang S, Ahmad Z, Mark JE (1994) Macromolecular Reports 31:411Google Scholar
  23. 23.
    Ahmad Z, Wang S, Mark JE (1994) Polym Mater Sci Eng 70:425Google Scholar
  24. 24.
    Wang S, Ahmad Z, Mark JE (1994) Chem Mater 6:943CrossRefGoogle Scholar
  25. 25.
    Ahmad Z, Wang S, Mark JE (1994) Polym Mater Sci Eng 70:303Google Scholar
  26. 26.
    Chen JP, Ahmad Z, Wang S, Mark JE, Arnold FE (1995) ACS Symp Ser 585:297Google Scholar
  27. 27.
    Ahmad Z, Wang S, Mark JE (1995) ACS Symp Ser 585:291CrossRefGoogle Scholar
  28. 28.
    Rodrigues DE, Brennan AB, Betrabet C, Wang B, Wilkes GL (1992) Chem Mater 4:1437CrossRefGoogle Scholar
  29. 29.
    Mascia L, Kioul A (1994) J Mater Sci Lett 13:641CrossRefGoogle Scholar
  30. 30.
    Kakimoto M, Iyoku Y, Morikawa A, Yamaguchi H, Imai Y (1994) Polym Prepr (ACS Div Polym Chem) 35:393Google Scholar
  31. 31.
    Asif KM, Sarwar MI, Rafiq S, Ahmad Z (1998) Polym Bull 40:583CrossRefGoogle Scholar
  32. 32.
    Zulfiqar S, Ahmad Z, Ishaq M, Saeed S, Sarwar MI (2007) J Mater Sci 42:93CrossRefGoogle Scholar
  33. 33.
    Kausar A, Zulfiqar S, Shabbir S, Ishaq M, Sarwar MI (2007) Polym Bull (in press)Google Scholar
  34. 34.
    Sarwar MI, Zulfiqar S, Ahmad Z (2007) Polym Int 56:000Google Scholar
  35. 35.
    Sarwar MI, Zulfiqar S, Ahmad Z (2007) J Sol Gel Sci Technol (in press)Google Scholar
  36. 36.
    Strong AB (1996) Plastics: materials and processing. Prentice-Hall, NJGoogle Scholar
  37. 37.
    Trostyanskaya EB (1995) In: Shain RE (ed) Polymer matrix composites. Chapman and Hall, LondonGoogle Scholar
  38. 38.
    Preston J, Dobinson F (1964) Polym Letters 2:1175CrossRefGoogle Scholar
  39. 39.
    Brennan AB, Wilkes GL (1991) Polymer 32:733CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Muhammad Ilyas Sarwar
    • 1
  • Sonia Zulfiqar
    • 1
  • Zahoor Ahmad
    • 2
  1. 1.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of Chemistry, Faculty of ScienceKuwait UniversitySafatKuwait

Personalised recommendations