Colloid and Polymer Science

, Volume 285, Issue 11, pp 1293–1297

Superhydrophobic surfaces of microspheres obtained by self-assembly of poly[2-(perfluorooctyl)ethyl acrylate-ran-2-(dimethylamino)ethyl acrylate] in supercritical carbon dioxide

Short Communication


Superhydrophobic surfaces were obtained by coating with microspheres formed by the self-assembly of poly[2-(perfluorooctyl)ethyl acrylate-ran-2-(dimethylamino)ethyl acrylate] (P[POA-r-DAA]) in the presence of dicarboxylic acids in supercritical carbon dioxide. The P[POA-r-DAA] random copolymer aggregated into micellar microspheres through the hydrogen bond cross-linking of the amino groups via the carboxylic acids. The size of the microspheres and the amount of the acids needed to produce them were dependent on the kinds of acids. Glutaric acid (Glu) and perfluorosuccinic acid (Psuc) provided microspheres at a 0.5 molar ratio of the acid/DAA. Psuc produced smaller microspheres than Glu. Maleic acid (Ma), succinic acid (Suc), and azelaic acid (Az) required a higher molar ratio to produce the microspheres. These acids provided spherical particles at the ratio of 1.0. The microspheres produced by Suc and Az contained particles with a several hundred nanometer size. The surface coated with the microspheres showed high water contact angles of 164°–172°.


Poly[2-(perfluorooctyl)ethyl acrylate-ran-2-(dimethylamino)ethyl acrylate] Dicarboxylic acids Cloud point Microspheres Superhydrophobic surface Contact angles Supercritical carbon dioxide 


  1. 1.
    Nakajima A, Fujishima A, Hashimoto K, Watanabe T (1999) Adv Mater 11:1365CrossRefGoogle Scholar
  2. 2.
    Zhang X, Shi F, Yu X, Liu H, Fu Y, Wang Z, Jiang L, Li X (2004) J Am Chem Soc 126:3064CrossRefGoogle Scholar
  3. 3.
    Kojima A, Izumi Y, Kowase Y, Ohte T, Miyashima K (1998) J Photopolym Sci Technol 11:321Google Scholar
  4. 4.
    Chen W, Fadeev AY, Hsieh MC, Oner D, Youngblood J, McCarthy TJ (1999) Langmuir 15:3395CrossRefGoogle Scholar
  5. 5.
    Woodward I, Schofield WCE, Roucoules V, Badyal JPS (2003) Langmuir 19:3432CrossRefGoogle Scholar
  6. 6.
    Youngblood JP, McCarthy TJ (1999) Macromolecules 32:6800CrossRefGoogle Scholar
  7. 7.
    Morra M, Occhiello E, Garbassi F (1989) Langmuir 5:872CrossRefGoogle Scholar
  8. 8.
    Xie Q, Xu J, Feng L, Jiang L, Tang W, Luo X, Han CC (2004) Adv Mater 16:302CrossRefGoogle Scholar
  9. 9.
    Onda T, Shibuichi S, Satoh N, Tsujii K (1996) Langmuir 12:2125CrossRefGoogle Scholar
  10. 10.
    Shibuichi S, Onda T, Satoh N, Tsujii K (1996) J Phys Chem 100:19512CrossRefGoogle Scholar
  11. 11.
    Yabu H, Takebayashi M, Tanaka M, Shimomura M (2005) Langmuir 21:3235CrossRefGoogle Scholar
  12. 12.
    Erbil HY, Demirel AL, Avci Y, Mert O (2003) Science 299:1377CrossRefGoogle Scholar
  13. 13.
    Lu X, Zhang C, Han Y (2004) Macromol Rapid Commun 25:1606CrossRefGoogle Scholar
  14. 14.
    Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, Gleason KK (2003) Nano Lett 3:1701CrossRefGoogle Scholar
  15. 15.
    Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Adv Mater 14:1857CrossRefGoogle Scholar
  16. 16.
    Li H, Wang X, Song Y, Liu Y, Li Q, Jiang L, Zhu D (2001) Angew Chem Int Ed 40:1743CrossRefGoogle Scholar
  17. 17.
    Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, Zhu D (2002) Angew Chem Int Ed 41:1221CrossRefGoogle Scholar
  18. 18.
    Feng X, Feng L, Jin M, Zhai J, Jiang L, Zhu D (2004) J Am Chem Soc 126:62CrossRefGoogle Scholar
  19. 19.
    Jiang L, Zhao Y, Zhai J (2004) Angew Chem Int Ed 43:4338CrossRefGoogle Scholar
  20. 20.
    Shiu JY, Kuo CW, Chen P, Mou CY (2004) Chem Mater 16:561CrossRefGoogle Scholar
  21. 21.
    Han JT, Xu X, Cho K (2005) Langmuir 21:6662CrossRefGoogle Scholar
  22. 22.
    Yoshida E, Nagakubo A (2007) Colloid Polym Sci 285:441CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Materials ScienceToyohashi University of TechnologyToyohashi, AichiJapan

Personalised recommendations