Colloid and Polymer Science

, Volume 285, Issue 12, pp 1301–1311

On the formation of calcium carbonate thin films under Langmuir monolayers of stearic acid

  • Michael Maas
  • Heinz Rehage
  • Holger Nebel
  • Matthias Epple
Original Contribution

Abstract

In this publication, we describe the growth of thin films of calcium carbonate beneath Langmuir monolayers of stearic acid. The size and shape of the crystalline structures were systematically studied by means of different microscopic techniques including Brewster angle microscopy, atomic force microscopy and scanning electron microscopy. In a series of experiments, we explored the calcium carbonate crystallization process for different lipid monolayers and subphases. The observed phenomena support a crystallization process which is induced by a thin, film-like structure of a precursor phase. The basic processes of crystal and aggregate formation can be represented by a simple model which is based on electrostatic interactions between the surfactant film and the inorganic calcium carbonate structures.

Keywords

Biomineralization Precursor film Calcium carbonate Stearic acid Brewster angle microscopy 

References

  1. 1.
    Baeuerlein E (2000) Biomineralization. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Baeuerlein E (2003) Angew Chem Int Ed 42:614–641CrossRefGoogle Scholar
  3. 3.
    Baeuerlein E (2004) Biomineralization. Progress in biology, molecular biology and application. Wiley-VCH, Weinheim, New YorkGoogle Scholar
  4. 4.
    Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New YorkGoogle Scholar
  5. 5.
    Mann S (2001) Biomineralization; principles and concepts in bioinorganic materials chemistry. Oxford University Press, OxfordGoogle Scholar
  6. 6.
    Meldrum FC (2003) Int Mater Rev 48:187–224CrossRefGoogle Scholar
  7. 7.
    Heywood BR, Mann S (1994) Chem Mater 6:311–318CrossRefGoogle Scholar
  8. 8.
    Mann S, Heywood BR, Rajam S, Walker JBA (1991) J Phys D-Appl Phys 24:154–164CrossRefGoogle Scholar
  9. 9.
    Mann S, Archibald DD, Didymus JM, Douglas T, Heywood BR, Meldrum FC, Reeves NJ (1993) Science 261:1286–1292CrossRefGoogle Scholar
  10. 10.
    DiMasi E, Olszta MJ, Patel VM, Gower LB (2003) CrystEngComm 5:346–350CrossRefGoogle Scholar
  11. 11.
    Duffy DM, Harding JH (2004) Langmuir 20:7637–7642CrossRefGoogle Scholar
  12. 12.
    Liu XY, Lim SW (2003) J Am Chem Soc 125:888–895CrossRefGoogle Scholar
  13. 13.
    Lochhead MJ, Letellier SR, Vogel V (1997) J Phys Chem B 101:10821–10827CrossRefGoogle Scholar
  14. 14.
    Ogino T, Suzuki T, Sawada K (1987) Geochim Cosmochim Acta 51:2757–2767CrossRefGoogle Scholar
  15. 15.
    Colfen H, Mann S (2003) Angew Chem Int Ed 42:2350–2365CrossRefGoogle Scholar
  16. 16.
    Olszta MJ, Odom DJ, Douglas EP, Gower LB (2003) Connect Tissue Res 44:326–334CrossRefGoogle Scholar
  17. 17.
    Raz S, Weiner S, Addadi L (2000) Adv Mater 12:38–42CrossRefGoogle Scholar
  18. 18.
    Addadi L, Raz S, Weiner S (2003) Adv Mater 15:959–970CrossRefGoogle Scholar
  19. 19.
    Aizenberg J, Lambert G, Weiner S, Addadi L (2002) J Am Chem Soc 124:32–39CrossRefGoogle Scholar
  20. 20.
    Boskey AL (2003) Connect Tissue Res 44:5–9CrossRefGoogle Scholar
  21. 21.
    Colfen H (2003) Curr Opin Colloid Interface Sci 8:23–31CrossRefGoogle Scholar
  22. 22.
    Hasse B, Ehrenberg H, Marxen JC, Becker W, Epple M (2000) Chem Eur J 6:3679–3685CrossRefGoogle Scholar
  23. 23.
    Marxen JC, Becker W, Finke D, Hasse B, Epple M (2003) J Molluscan Stud 69:113–121CrossRefGoogle Scholar
  24. 24.
    Volkmer D, Fricke M, Agena C, Mattay J (2004) J Mater Chem 14:2249–2259CrossRefGoogle Scholar
  25. 25.
    Colfen H, Antonietti M (2005) Angew Chem Int Ed 44:5576–5591CrossRefGoogle Scholar
  26. 26.
    Horn D, Rieger J (2001) Angew Chem Int Ed 40:4331–4361CrossRefGoogle Scholar
  27. 27.
    Loste E, Meldrum FC (2001) Chem Commun 10:901–902CrossRefGoogle Scholar
  28. 28.
    Günter C, Becker A, Wolf G, Epple M (2005) Z Anorg Allg Chem 631:2830–2835CrossRefGoogle Scholar
  29. 29.
    Volkmer D, Harms M, Gower L, Ziegler A (2005) Angew Chem Int Ed 117:645–650CrossRefGoogle Scholar
  30. 30.
    Aizenberg J, Lambert G, Addadi L, Weiner S (1996) Adv Mater 8:222–226CrossRefGoogle Scholar
  31. 31.
    Albeck S, Weiner S, Addadi L (1996) Chem Eur J 2:278–284CrossRefGoogle Scholar
  32. 32.
    Albeck S, Addadi L, Weiner S (1996) Connect Tissue Res 35:365–370CrossRefGoogle Scholar
  33. 33.
    Becker A, Becker W, Marxen JC, Epple M (2003) Z Anorg Allg Chem 629:2305–2311CrossRefGoogle Scholar
  34. 34.
    Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE (1996) Nature 381:56–58CrossRefGoogle Scholar
  35. 35.
    Blank S, Arnoldi M, Khoshnavaz S, Treccani L, Kuntz M, Mann KH, Grathwohl G, Fritz M (2003) J Microsc 212:280–291CrossRefGoogle Scholar
  36. 36.
    Coblentz FE, Shafer TH, Roer RD (1998) Comp Biochem Physiol Part B Biochem Mol Biol 121:349–360CrossRefGoogle Scholar
  37. 37.
    Falini G, Albeck S, Weiner S, Addadi L (1996) Science 271:67–69CrossRefGoogle Scholar
  38. 38.
    Feng QL, Pu G, Pei Y, Cui FZ, Li HD, Kim TN (2000) J Cryst Growth 216:459–465CrossRefGoogle Scholar
  39. 39.
    Gotliv BA, Weiner S, Addadi L (2003) ChemBioChem 4:529CrossRefGoogle Scholar
  40. 40.
    Raz S, Hamilton PC, Wilt FH, Weiner S, Addadi L (2003) Adv Funct Mater 13:480–486CrossRefGoogle Scholar
  41. 41.
    Wada N, Okazaki M, Tachikawa S (1993) J Cryst Growth 132:115–121CrossRefGoogle Scholar
  42. 42.
    Wheeler AP, George JW, Evans CA (1981) Science 212:1397–1398CrossRefGoogle Scholar
  43. 43.
    Zaremba CM, Belcher AM, Fritz M, Li Y, Mann S, Hansma PK, Morse DE, Speck JS, Stucky GD (1996) Chem Mater 8:679–690CrossRefGoogle Scholar
  44. 44.
    Hoch AR, Reddy MM, Aiken GR (1999) Geochim Cosmochim Acta 64:61–72CrossRefGoogle Scholar
  45. 45.
    Manoli F, Dalas E (1999) J Cryst Growth 217:416–421CrossRefGoogle Scholar
  46. 46.
    Teng HH, Dove PM, Orme CA, de Yoreo JJ (1998) Science 282:724–727CrossRefGoogle Scholar
  47. 47.
    Jin DH, Zhang Y, Nagunuma T, Ogawa T, Hatekakeyama E, Muramoto K (2000) J Agric Food Chem 48:5454CrossRefGoogle Scholar
  48. 48.
    Volkmer D, Fricke M, Huber T, Sewald N (2004) Chem Commun 4579–4582Google Scholar
  49. 49.
    Colfen H, Qi L (2001) Adv Mater 14:300–303Google Scholar
  50. 50.
    Hacke S (2001) Brewsterwinkel-Mikroskopie zur Untersuchung der Kristallisation von Calciumcarbonaten an Modell-Monofilmen an der Grenzfläche Wasser/Luft. Ph.D. thesis, University of Göttingen, GermanyGoogle Scholar
  51. 51.
    Hacke S, Möbius D (2004) Colloid Polym Sci 282:1242–1246CrossRefGoogle Scholar
  52. 52.
    Backov R, Lee CM, Khan SR, Mingotaud C, Fanucci GE, Talham DR (2000) Langmuir 16:6013–6019CrossRefGoogle Scholar
  53. 53.
    Benitez IO, Talham DR (2004) Langmuir 20:8287–8293CrossRefGoogle Scholar
  54. 54.
    Buijnsters PJJA, Donners JJJM, Hill SJ, Heywood BR, Nolte RJM, Zwanenburg B, Sommerdijk NAJM (2001) Langmuir 17:3623–3628CrossRefGoogle Scholar
  55. 55.
    Moulin P, Roques H (2003) J Colloid Interface Sci 261:115–126CrossRefGoogle Scholar
  56. 56.
    Donnet M, Bowen P, Jongen N, Lemaitre J, Hofmann H (2005) Langmuir 21:100–108CrossRefGoogle Scholar
  57. 57.
    Müller H, Zentel R, Janshoff A, Janke M (2006) Langmuir 22:11034–11040CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Michael Maas
    • 1
  • Heinz Rehage
    • 1
  • Holger Nebel
    • 2
  • Matthias Epple
    • 2
  1. 1.Physical Chemistry IIUniversity of DortmundDortmundGermany
  2. 2.Institute of Inorganic ChemistryUniversity of Duisburg-EssenEssenGermany

Personalised recommendations