Colloid and Polymer Science

, Volume 285, Issue 9, pp 953–966 | Cite as

Thermoresponsive magnetic colloids

Invited Review

Abstract

The combination of magnetic nanoparticles with thermoresponsive polymer systems leads to the formation of hybrid particle dispersions or composites with a variety of interesting properties and perspectives, including instant dispensability, thermoreversible formation of magnetic fluids, and novel magnetoresponsive properties. Special interest is gained by the magnetic heatability of magnetic particles that allows the activation of thermal effects by the application of a high-frequency electromagnetic field. This review summarizes the recent developments in this young field of research with application potential for magnetic separation, drug release systems, and for sensor and actuator purposes.

Keywords

Magnetic fluids Stimuli-sensitive materials Core-shell particles Superparamagnetic Nanocomposites 

Abbreviations

AAEM

acetoacetoxyethyl methacrylate

DMSO

dimethylsulfoxide

ELISA

enzyme-linked immuno sorbent essay

GPC

gel permeation chromatography

IPN

interpenetrating polymer network

LbL

layer-by-layer

LCST

lower critical solution temperature

MAA

methacrylic acid

MBA

N,N-methylene-bis-acrylamide

MPS

methacryloxypropyltrimethoxysilane

MRI

magnetic resonance imaging

NiPAAm

N-isopropyl acrylamide

NP

nanoparticle

PCL

poly(ɛ-caprolactone)

PEG

poly(ethylene glycol)

PMEMA

poly(2-methoxethyl methacrylate)

SDP

single domain particle

SHP

specific heating power

TEM

transmission electron microscopy

UCST

upper critical solution temperature

VCL

vinyl caprolactam

W/O

water-in-oil

XRD

X-ray diffractometry

References

  1. 1.
    Craig D (1995) Magnetism-principles and applications. Wiley, ChichesterGoogle Scholar
  2. 2.
    Berkovsky BM, Bashtovoy V (1996) Magnetic fluids and applications handbook. Begell House, New YorkGoogle Scholar
  3. 3.
    Blums E, Cebers A, Mairov MM (1997) Magnetic fluids. Walter de Gruyter, BerlinGoogle Scholar
  4. 4.
    Andrä W (1998) Magnetism in medicine. In: Andrä W, Nowak H (eds). Wiley-VCH, BerlinGoogle Scholar
  5. 5.
    Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) J Phys D Appl Phys 36:R167–R181ADSGoogle Scholar
  6. 6.
    Tartaj P, Morales MP, Veintemillas-Verdaguer S, Gonzáles-Carreno T, Serna CJ (2003) J Phys D Appl Phys 36:R182–R197ADSGoogle Scholar
  7. 7.
    Berry CC, Curtis ASG (2003) J Phys D Appl Phys 36:R198–R211ADSGoogle Scholar
  8. 8.
    Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) J Colloid Interface Sci 212:474Google Scholar
  9. 9.
    Alexiou C, Arnold W, Hulin P, Klein R, Schmidt A, Bergemann C, Parak FG (2001) Magnetohydrodynamics 37:3Google Scholar
  10. 10.
    Roath S (1999) J Magn Magn Mater 122:329ADSGoogle Scholar
  11. 11.
    Lui A-H, Schmidt W, Matoussevitch N, Bönnemann H, Spliethoff B, Tesche B, Bill E, Kiefer W, Schüth F (2004) Angew Chem 116:4403–4406Google Scholar
  12. 12.
    Katz E, Willner I (2005) Angew Chem Int Ed 44:4791–4794Google Scholar
  13. 13.
    Lee J, Lee D, Oh E, Kim J, Kim Y-P, Jin S, Kim H-S, Hwang Y, Kwak JH, Park J-G, Shin C-H, Kim J, Hyeon T (2005) Angew Chem 117:7593–7598Google Scholar
  14. 14.
    Brown WF Jr (1959) J Appl Phys 30(Suppl):130SGoogle Scholar
  15. 15.
    Osada Y, Matsuda A (1995) Nature 376:219PubMedADSGoogle Scholar
  16. 16.
    Tanaka T (1978) Phys Rev Lett 40:820ADSGoogle Scholar
  17. 17.
    Topp MD, Dijkstra PD, Talsma H, Feijen J (1997) Macromolecules 30:8518Google Scholar
  18. 18.
    Dagani R (1997) Chem Eng News 75:26Google Scholar
  19. 19.
    Osada Y, Gong J-P (1998) Adv Mater 10:827Google Scholar
  20. 20.
    Aoyagi T, Miyata F, Nagase Y (1994) J Control Release 32:87Google Scholar
  21. 21.
    Rao GV, Krug ME, Balamurugan S, Xu H, Xu Q, López GP (2002) Chem Mater 14:5075–5080Google Scholar
  22. 22.
    Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, CambridgeGoogle Scholar
  23. 23.
    Cederström J, van Humbeeck J (1996) J de Physique IV:C2-335Google Scholar
  24. 24.
    Lendlein A, Schmidt AM, Langer R (2001) Proc Natl Acad Sci 98:241Google Scholar
  25. 25.
    Garreau S, Leclerc M, Errien N, Louarn G (2003) Macromolecules 36:692–697Google Scholar
  26. 26.
    Elias HG (2001) Makromoleküle Band 2: Physikalische Strukturen und Eigenschaften. Wiley-VCH, WeinheimGoogle Scholar
  27. 27.
    Shibayama M, Tanaka T (1993) Adv Polym Sci 109:1Google Scholar
  28. 28.
    Dušek K, Patterson D (1968) J Polym Sci A-2 6:1209Google Scholar
  29. 29.
    Tanaka T (1986) Encycl Polym Sci Eng 2nd edn 7:514Google Scholar
  30. 30.
    Norhausen C (1997) Dissertation, Universität KarlsruheGoogle Scholar
  31. 31.
    Kim J, Deike I, Dingenouts N, Norhausen C, Ballauff M (1999) Macromol Symp 142:217Google Scholar
  32. 32.
    Senff H, Richtering W (1999) J Chem Phys 111(4):1705ADSGoogle Scholar
  33. 33.
    Jeong B, Bae YH, Lee DS, Kim SW (1997) Nature 388:860PubMedADSGoogle Scholar
  34. 34.
    Kiser PF, Wilsin G, Needham D (1998) Nature 394:459PubMedADSGoogle Scholar
  35. 35.
    Kraft ML, Moore JS (2001) J Am Chem Soc 123:12921PubMedGoogle Scholar
  36. 36.
    Debord JD, Eustis S, Debord SB, Lofye MT, Lyon LA (2002) Adv Mater 14:658Google Scholar
  37. 37.
    Lu Y, Mei Y, Drechsler M, Ballauf M (2006) Angew Chem Angew Chem Int Ed 45:813Google Scholar
  38. 38.
    Otsuka K, Wayman CM (eds) (1998) Shape memory materials. Cambridge University Press, CambridgeGoogle Scholar
  39. 39.
    Bar-Cohen Y (2002) J Spacecraft Rockets 39:822CrossRefGoogle Scholar
  40. 40.
    Tobushi H, Hayashi S, Ikai A, Hara H (1996) J Phys IV 6:C1Google Scholar
  41. 41.
    Jeong HM, Lee JB, Lee SY, Kim BK (2000) J Mater Sci 35:1579Google Scholar
  42. 42.
    Reyntjens WG, Du Prez F, Goethals EJ (1999) Macromol Rapid Commun 20:251Google Scholar
  43. 43.
    Gall K, Dunn ML, Liu Y, Finch D, Lake M, Munshi NA (2002) Acta Mater 50:5115Google Scholar
  44. 44.
    Lendlein A, Schmidt AM, Langer R (2001) Proc Natl Acad Sci 98:241Google Scholar
  45. 45.
    Lendlein A, Schmidt AM, Schröter M, Langer R (2005) J Polym Sci A Polym Chem 43:1369–1381Google Scholar
  46. 46.
    Charlesby A (1960) In: Atomic radiation and polymers. Pergamon, Oxford 198–257Google Scholar
  47. 47.
    Machi S (1996) Radiat Phys Chem 47:333–336ADSGoogle Scholar
  48. 48.
    Lendlein A, Langer R (2002) Science 296:1673PubMedADSGoogle Scholar
  49. 49.
    Lendlein A, Kelch S (2002) Angew Chem 114:2138Google Scholar
  50. 50.
    Massart R, Cabuil V (1987) J Chim Phys 84:967Google Scholar
  51. 51.
    Khalafalla SE, Reimers GW (1973) Sep Sci 8:161Google Scholar
  52. 52.
    Massart R (1981) IEEE Trans Magn MAG-17:1247Google Scholar
  53. 53.
    Thomas JR (1966) J Appl Phys 37:2914ADSGoogle Scholar
  54. 54.
    Hess PH, Parker PH Jr (1966) J Appl Polym Sci 10:1915Google Scholar
  55. 55.
    Bönnemann H, Brijoux W, Brinkmann R, Matoussevitch N, Waldöfner N, Palina N, Modrow H (2003) Inorg Chim Acta 350:617Google Scholar
  56. 56.
    Dumestre F, Chaudret B, Amiens C, Ranaud P, Fejes F (2004) Science 303:821Google Scholar
  57. 57.
    Shukla N, Liu C, Roy AG (2006) Mater Lett 60:995Google Scholar
  58. 58.
    Myers D (1999) Surfaces, Interfaces, and Colloids 2nd edn. Wiley-VCH, New YorkGoogle Scholar
  59. 59.
    Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B (1999) J Colloid Interface Sci 212:49Google Scholar
  60. 60.
    Lee J, Senna M (1995) Colloid Polym Sci 273:76Google Scholar
  61. 61.
    Kondo A, Fukuda H (1999) Colloids Surf A Physicochem Eng Asp 153:435Google Scholar
  62. 62.
    Elaissari A, Bourell V (2001) J Magn Magn Mater 225:151ADSGoogle Scholar
  63. 63.
    Leslie-Peleckie DL, Rieke RD (1996) Chem Mater 8:1770–1783Google Scholar
  64. 64.
    Jacobs IS, Bean CP (1963) In: Rado GT, Suhl H (eds) Magnetism, Vol. III. Academic, New YorkGoogle Scholar
  65. 65.
    Goya GF, Berquó TS, Fonseca FC, Morales MP (2003) J Appl Phys 94:3520ADSGoogle Scholar
  66. 66.
    Kneller E (1962) Ferromagnetismus. Springer, BerlinMATHGoogle Scholar
  67. 67.
    Romanus E, Matoussevitch N, Prass S, Heinrich J, Müller R, Berkov DV, Bönnemann H, Weber P (2004) Appl Organomet Chem 18:548–552Google Scholar
  68. 68.
    Stoner EC, Wohlfarth FRS (1948) Philos Trans R Soc Lond A 240:599–642ADSGoogle Scholar
  69. 69.
    Néel ML (1949) Ann Geophys 5(2):99–136Google Scholar
  70. 70.
    Brown WF Jr (1959) J Appl Phys Suppl 30(4):130S–132SGoogle Scholar
  71. 71.
    Néel L (1964) In: Porter CJ (ed) Progress in low temperature physics, vol 1. North Holland Publisher Cooperation, AmsterdamGoogle Scholar
  72. 72.
    Glöckl G, Hergt R, Zeisberger M, Dutz S, Nagel S, Weitschies W (2006) J Phys Condens Matter 18:S2935ADSGoogle Scholar
  73. 73.
    Thompson MT (1998) IEEE Trans Magn 34:3755Google Scholar
  74. 74.
    Zhang XK, Li YF, Xiao JQ (2003) J Appl Phys 93:7124ADSGoogle Scholar
  75. 75.
    Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamon, London, UKMATHGoogle Scholar
  76. 76.
    Brezovich IA (1988) Med Phys Monogr 16:82Google Scholar
  77. 77.
    Söffge F, Schmidtbauer E (1981) J Magn Magn Mater 24:54–66ADSGoogle Scholar
  78. 78.
    Dutz S, Hergt R, Mürbe J, Müller R, Zeisberger M, Andrä W, Töpfer J, Bellemann ME (2007) J Magn Magn Mater 308:305ADSGoogle Scholar
  79. 79.
    Andrä W (1998) Magnetism in medicine, Andrä W, Nowak H (eds). Wiley-VCH, BerlinGoogle Scholar
  80. 80.
    Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R (1999) J Magn Magn Mater 194:185–196ADSGoogle Scholar
  81. 81.
    Chan DCF, Kirpotin DB, Bunn PA Jr (1993) J Magn Magn Mat 122:374–378ADSGoogle Scholar
  82. 82.
    Hilger I, Hiergeist R, Hergt R, Winnefeld K, Schubert H, Kaiser WA (2002) Invest Radiol 37:580–586PubMedGoogle Scholar
  83. 83.
    deGennes PG, Pincus PA (1970) Phys Kondens Mat 11:189Google Scholar
  84. 84.
    Jordan PC (1973) Mol Phys 25:961Google Scholar
  85. 85.
    Chantrell RW, Bradbury A, Popplewell J, Charles SW (1982) J Appl Phys 53:2742ADSGoogle Scholar
  86. 86.
    Ivanov AO, Wang Z, Holm C (2004) Phys Rev E 69:031206ADSGoogle Scholar
  87. 87.
    Hayes CF (1975) J Colloid Interface Sci 52:239Google Scholar
  88. 88.
    Klokkenburg M, Vonk C, Claesson EM, Meeldijk JD, Erné BH, Philipse AP (2004) J Am Chem Soc 126:16706PubMedGoogle Scholar
  89. 89.
    Einstein A (1956) In: Furth R (ed) Investigations on the theory of the Brownian movement. Dover, New YorkGoogle Scholar
  90. 90.
    Batchtelor GK (1970) An introduction to fluid dynamics. Cambridge University Press, LondonGoogle Scholar
  91. 91.
    Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, LondonGoogle Scholar
  92. 92.
    McTague JP (1969) J Chem Phys 51:133Google Scholar
  93. 93.
    Odenbach S, Stoerk H (1998) J Magn Magn Mater 183:188ADSGoogle Scholar
  94. 94.
    Shliomis M (1972) Sov Phys JETP 34:1291Google Scholar
  95. 95.
    Rosman R, Jansen JJM, Rekveldt MT (1990) J Appl Phys 67:3072ADSGoogle Scholar
  96. 96.
    Pop LM, Odenbach S (2006) J Phys Condens Mater 18:S2785ADSGoogle Scholar
  97. 97.
    Cowley MD, Rosensweig RE (1967) J Fluid Mech 30:671MATHADSGoogle Scholar
  98. 98.
    Gailitis A (1977) J Fluid Mech 82:401MATHADSGoogle Scholar
  99. 99.
    Lange A, Reimann B, Richter R (2001) Phys Rev E 61:5528ADSGoogle Scholar
  100. 100.
    Reimann B, Richter R, Knieling H, Rehberg I (2005) Phys Rev E 71:055202(R)ADSGoogle Scholar
  101. 101.
    Lanova O, Mathis G, Mitkova T, Polevikov V, Tobiska L (2006) J Phys Condens Matter 18:S2657ADSGoogle Scholar
  102. 102.
    Richter R, Bläsing J (2001) Rev Sci Inst 72:1729ADSGoogle Scholar
  103. 103.
    Gollwitzer C, Rehberg I, Richter R (2006) J Phys Condens Matter 18:S2643ADSGoogle Scholar
  104. 104.
    Lorenz C, Zahn M (2003) Phys Fluids 15:S4Google Scholar
  105. 105.
    Rosensweig RE, Zahn M, Shumovich R (1983) J Magn Magn Mater 39:127ADSGoogle Scholar
  106. 106.
    Zahn M (2001) J Nanopart Res 3:73–78Google Scholar
  107. 107.
    Kirsten C, Roth M, Lammerschop O, Sauer H-M (2002) Patent WO 02/13580 A1Google Scholar
  108. 108.
    Stark P, Rossi G, Mojazza HR, Haghighat CAR, Schuler P Int Patent Appl. PCT/US01/14079Google Scholar
  109. 109.
    Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Am J Roentgenol 152:167Google Scholar
  110. 110.
    Safarik I, Safarikova M (1999) J Chromatogr B 722:33–53Google Scholar
  111. 111.
    Burns MA, Kvesitadze GI, Graves DJ (2004) Biotechnol Bioeng 27:137Google Scholar
  112. 112.
    Kouassi GK, Iruyadaraj J, McCarthy G (2005) J Nanobiotechnol 3:1Google Scholar
  113. 113.
    Krizova J, Spanova A, Rittich B, Horak D (2005) J Chromatogr A 1064:247PubMedGoogle Scholar
  114. 114.
    Horak D, Rittich B, Safar J, Spanova A, Lenfeld J, Beneš MJ (2001) Biotechnol Prog 17:447PubMedGoogle Scholar
  115. 115.
    Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lübbe AS (2000) Cancer Res 60:6641PubMedGoogle Scholar
  116. 116.
    Kondo A, Ohnishi N, Fukurawa H (2003) Pharm Tech Japan 19:1753Google Scholar
  117. 117.
    Schmidt AM (2005) Macromol Rapid Commun 26:93–97Google Scholar
  118. 118.
    Schmidt AM (2005) J Magn Magn Mater 289C:5–8ADSGoogle Scholar
  119. 119.
    Gelbrich T, Feyen M, Schmidt AM (2006) Macromolecules 39:3469–3472Google Scholar
  120. 120.
    Kaiser A, Gelbrich T, Schmidt AM (2006) J Phys Condens Matter 18:S2563–S2580ADSGoogle Scholar
  121. 121.
    Pich A, Bhattacharya S, Lu Y, Boyko V, Adler H-JP (2004) Langmuir 20:10706–10711PubMedGoogle Scholar
  122. 122.
    Suzuki D, Kawaguchi H (2006) Colloid Polym Sci 284:1443Google Scholar
  123. 123.
    Sauzedde F, Elaissari A, Pichot C (2000) Macromol Symp 151:617–623Google Scholar
  124. 124.
    Wong JE, Gaharwar AK, Müller-Schulte D, Bahadur D, Richtering W (2007) J Magn Magn Mater 311:219Google Scholar
  125. 125.
    Kondo A, Fukuda H (1997) J Ferment Bioeng 84:337–341Google Scholar
  126. 126.
    Ding X-B, Sun 1 Z-H, Zhang W-C, Peng Y-X, Wan G-X, Jiang Y-Y (2000) J Appl Polym Sci 77:2915–2920Google Scholar
  127. 127.
    Elaissari A, Bourrel V (2001) J Magn Magn Mater 225:151ADSGoogle Scholar
  128. 128.
    Xulu PM, Filipcsei G, Zrínyi M (2000) Macromolecules 33:1716Google Scholar
  129. 129.
    Furukawa H, Shimojyo R, Ohnishi N, Fukuda H, Kondo A (2003) Appl Microbiol Biotechnol 62:478–483PubMedGoogle Scholar
  130. 130.
    Deng Y, Yang W, Wang C, Fu S (2003) Adv Mater 15:1729–1732Google Scholar
  131. 131.
    Guo J, Yang W, Deng Y, Wang C, Fu S (2005) Small 7:737–743Google Scholar
  132. 132.
    Guo J, Yang W, Wang C, He J, Chen J (2006) Chem Mater 18:5554–5562Google Scholar
  133. 133.
    Müller-Schulte D, Schmitz-Rode T (2006) J Magn Magn Mater 302:267ADSGoogle Scholar
  134. 134.
    Advincula RC (2003) J Dispers Sci Technol 24:343–361Google Scholar
  135. 135.
    Rühe J (2004) In: Advincula RC, Brittain WJ, Caster KC, Rühe J (eds) Polymer brushes. Wiley-VCH, Weinheim, p 18Google Scholar
  136. 136.
    Zhao B, Brittain WJ (2000) Prog Polym Sci 25 677Google Scholar
  137. 137.
    Pyun J, Kowalewski T, Matyjaszewski K (2003) Macromol Rapid Commun 24:1043–1059Google Scholar
  138. 138.
    Vestal CR, Zhang ZJ (2002) J Am Chem Soc 124:14312–14313PubMedGoogle Scholar
  139. 139.
    Matsuno R, Yamamoto K, Otsuka H, Takahara A (2003) Chem Mater 15:3–5Google Scholar
  140. 140.
    Elaissari A, Bourell V (2001) J Magn Magn Mater 225:151–155ADSGoogle Scholar
  141. 141.
    Elaissari A (1999) Patent Appl WO 99-FR11 19990106Google Scholar
  142. 142.
    Chang Y, Sue Z (2002) Mater Sci Eng A A333:155–159Google Scholar
  143. 143.
    Shamim N, Hong L, Hidajat K, Uddin MS (2006) J Coll Polym Sci 304:1Google Scholar
  144. 144.
    Müller-Schulte DP (2003) Int Patent Appl WO2003–EP5614 20030528Google Scholar
  145. 145.
    Furukawa H, Ohnishi N, Kataoka K, Ueno K (2002) Int Patent Appl WO 2002016571Google Scholar
  146. 146.
    Chang Y, Sue Z (2002) Mater Sci Eng A A333:155–159Google Scholar
  147. 147.
    Kato N, Yamanobe S, Sakai Y, Takahashi F (2001) Anal Sci 17:i1125Google Scholar
  148. 148.
    Kato N, Takizawa Y, Takahashi F (1997) J Intell Mater Syst Struct 8:588CrossRefGoogle Scholar
  149. 149.
    Wakamatsu H, Yamamoto K, Nakao A, Aoyagi T (2006) J Magn Magn Mater 302:327ADSGoogle Scholar
  150. 150.
    Zrínyi M, Barsi L, Büki A (1996) J Chem Phys 104:8750ADSGoogle Scholar
  151. 151.
    Zrínyi M, Barsi L, Szabó D (1997) J Chem Phys 106:5685ADSGoogle Scholar
  152. 152.
    Martin JE, Venturini E, Odinek J, Anderson RA (2000) Phys Rev E 61:1063–1065Google Scholar
  153. 153.
    Collin D, Auernhammer GK, Gavat O, Martinoly P, Brand HR (2003) Macromol Rapid Commun 24:737–741Google Scholar
  154. 154.
    Zrínyi M, Szabó D, Filipcsei G, Fehér J (2002) In: Osada JY, Khokhlov (Hrsg.) AR, Polymer Gels and Networks, Kapitel 11. Marcel Dekker, New YorkGoogle Scholar
  155. 155.
    Raikher YL, Rusakov VV, Coffey WT, Kalmykov YP (2001) Phys Rev E 63:031402ADSGoogle Scholar
  156. 156.
    Lin C-L, Chiu W-Y (2005) J Polym Sci A Polym Chem 43:5923–5934Google Scholar
  157. 157.
    Filipcsei G, Szilagyi A, Csetneki I, Zrinyi M (2006) Macromol Symp 239:130Google Scholar
  158. 158.
    Schmidt AM (2006) Macromol Rapid Commun 27:1168Google Scholar
  159. 159.
    Kato N, Oishi A, Takahashi F (1998) Mater Sci Eng C 6:291–296Google Scholar
  160. 160.
    Lattermann G, Krekhova M (2006) Macromol Rapid Commun 27:1373Google Scholar
  161. 161.
    Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Proc Natl Acad Sci 103:3540PubMedADSGoogle Scholar
  162. 162.
    Buckley PR, McKinley GH, Wilson TS, Small W, Benett WJ, Bearinger JP, McElfresh MW, Maitland DJ (2006) IEEE Trans Biomed Eng 53:2075PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institut für Organische und Makromolekulare ChemieHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations