Colloid and Polymer Science

, Volume 285, Issue 10, pp 1101–1107 | Cite as

Template synthesis of tin-doped indium oxide (ITO)/polymer and the corresponding carbon composite hollow colloids

  • Huifang Xu
  • Shujiang Ding
  • Wei Wei
  • Chengliang Zhang
  • Xiaozhong Qu
  • Jiguang Liu
  • Zhenzhong Yang
Original Contribution


SnO2, In2O3, and Sn-doped In2O3 (ITO)/polymer and the corresponding carbon composite hollow colloids are template synthesized. It is essential that the sulfonated gel shell of the cross-linked polystyrene hollow colloid can favorably induce adsorption of target precursors. After being calcined in air to remove the template, SnO2, In2O3, and ITO hollow colloids are obtained. Because the cross-linked polymer gel can be transformed into carbon in nitrogen at higher temperature such as 800 °C, metal oxide/carbon hollow colloids are consequently derived, whose shells are mesoporous. The SnO2-, In2O3-, and ITO-containing polymer or carbon composite hollow colloids will be promising in sensors, catalysts, and fuel cells as electrode materials.


Hollow colloid Polymeric gel Template synthesis Metal oxide Carbon 



We thank financial support by the NSF of China (50573083, 50325313, 20128004, and 90206025), Chinese Academy of Sciences, and the China Ministry of Science and Technology (2004-01-09, KJCX2-SW-H07, and 2003CB615600).

Supplementary material

396_2007_1661_Fig1_ESM.gif (169 kb)

(GIF 172 kb)

396_2007_1661_Fig1_ESM.tif (578 kb)
High resolution image file (TIFF 591 kb)
396_2007_1661_Fig2_ESM.gif (186 kb)

(GIF 189 kb)

396_2007_1661_Fig2_ESM.tif (579 kb)
High resolution image file (TIFF 592 kb)
396_2007_1661_Fig3_ESM.gif (196 kb)

(GIF 200 kb)

396_2007_1661_Fig3_ESM.tif (579 kb)
High resolution image file (TIFF 592 kb)
396_2007_1661_Fig4_ESM.gif (10 kb)

(GIF 10.4 kb)

396_2007_1661_Fig4_ESM.tif (2.1 mb)
High resolution image file (TIFF 2 176 kb)
396_2007_1661_Fig5_ESM.gif (9 kb)

(GIF 9 137 kb)

396_2007_1661_Fig5_ESM.tif (2 mb)
High resolution image file (TIFF 2 108 kb)


  1. 1.
    Caruso F, Caruso RA, Möhwald H (1998) Science 282:1111–1114CrossRefGoogle Scholar
  2. 2.
    Caruso F (2001) Adv Mater 13:11–22 (and references therein)CrossRefGoogle Scholar
  3. 3.
    Zhong ZY, Yin YD, Gates B, Xia YN (2000) Adv Mater 12:206–209CrossRefGoogle Scholar
  4. 4.
    Zhu JJ, Lu ZH, Aruna ST, Aurbach D, Gedanken A (2000) Chem Mater 12:2557–2566CrossRefGoogle Scholar
  5. 5.
    Jiang LH, Sun GQ, Zhou ZH, Sun SG, Wang Q, Yan SY, Li HQ, Tian J, Guo JS, Zhou B, Xin Q (2005) J Phys Chem B 109:8774–8778CrossRefGoogle Scholar
  6. 6.
    Wang YL, Jiang XC, Xia YN (2003) J Am Chem Soc 125:16176–16177CrossRefGoogle Scholar
  7. 7.
    Emons TT, Li JQ, Nazar LF (2002) J Am Chem Soc 124:8516–8517CrossRefGoogle Scholar
  8. 8.
    Alam MJ, Cameron DC (2000) Thin Solid Films 377–378:455–459CrossRefGoogle Scholar
  9. 9.
    Djaoued Y, Phong VH, Badilescu S, Ashrit PV, Girouard FE, Truong VV (1997) Thin Solid Films 293:108–112CrossRefGoogle Scholar
  10. 10.
    Mattox DM (1991) Thin Solid Films 204:25–32CrossRefGoogle Scholar
  11. 11.
    Bellingham JR, Mackenize AP, Philips WA (1991) Appl Phys Lett 58:2506–2508CrossRefGoogle Scholar
  12. 12.
    Kim SM, Seo KH, Lee JH, Kim JJ, Lee HY, Lee JS (2006) J Eur Ceram Soc 26:73–80CrossRefGoogle Scholar
  13. 13.
    Patra CR, Gedanken A (2004) New J Chem 28:1060–1065CrossRefGoogle Scholar
  14. 14.
    Murali A, Barve A, Leppert VJ, Risbud SH, Kennedy LM, Lee HWH (2001) Nano Lett 1:287–289CrossRefGoogle Scholar
  15. 15.
    Yu DB, Wang DB, Yu WC, Qian YT (2003) Mater Lett 58:84–87CrossRefGoogle Scholar
  16. 16.
    Peng XS, Meng GW, Wang XF, Wang YW (2002) Chem Mater 14:4490–4493CrossRefGoogle Scholar
  17. 17.
    Li BX, Xie Y, Jing M, Rong GX, Tang YC, Zhang GZ (2006) Langmuir 22:9380–9385CrossRefGoogle Scholar
  18. 18.
    Zhang D, Sun L, Xu G, Yan C (2006) Phys Chem Chem Phys 8:4874–4880CrossRefGoogle Scholar
  19. 19.
    Woon SB, Sohn K, Kim JY, Shin CH, Yu JS, Hyeon T (2002) Adv Mater 14:19–21CrossRefGoogle Scholar
  20. 20.
    Kim M, Sohn K, Na HB, Hyeon T (2002) Nano Lett 2:1383–1387CrossRefGoogle Scholar
  21. 21.
    Fan J, Wang T, Yu CZ, Tu B, Jiang ZY, Zhao DY (2004) Adv Mater 16:1432–1436Google Scholar
  22. 22.
    Wang Y, Zeng HC, Lee JY (2006) Adv Mater 18:645–649CrossRefGoogle Scholar
  23. 23.
    Ding SJ, Zhang CL, Yang M, Qu XZ, Lu YF, Yang ZZ (2006) Polymer 47:8360–8366CrossRefGoogle Scholar
  24. 24.
    Yang M, Ma J, Zhang CL, Yang ZZ, Lu YF (2005) Angew Chem Int Ed 44:6727–6730CrossRefGoogle Scholar
  25. 25.
    Yoon SB, Kim JY, Yu JS (2001) Chem Commun 559–560Google Scholar
  26. 26.
    Nakagawa H, Watanabe K, Harada Y, Miura K (1999) Carbon 37:1455–1461CrossRefGoogle Scholar
  27. 27.
    Tang C, Qi K, Wooley KL, Matyjaszewski K, Kowalewski T (2004) Angew Chem Int Ed 43:2783–2787CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Huifang Xu
    • 1
  • Shujiang Ding
    • 1
  • Wei Wei
    • 1
  • Chengliang Zhang
    • 1
  • Xiaozhong Qu
    • 1
  • Jiguang Liu
    • 1
  • Zhenzhong Yang
    • 1
  1. 1.State Key Laboratory of Polymer Physics and Chemistry, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations