Colloid and Polymer Science

, Volume 285, Issue 9, pp 977–983 | Cite as

A fluoroalkyl end-capped N-(1,1-dimethyl-3-oxobutyl)acrylamide oligomer/silica gel nanocomposite with no weight loss even at 800 °C equal to an original silica gel

  • Hideo Sawada
  • Tamikazu Narumi
  • Shun Kodama
  • Motohisa Kamijo
  • Ryou Ebara
  • Masashi Sugiya
  • Yasukazu Iwasaki
Original Contribution

Abstract

Fluoroalkyl end-capped N-(1,1-dimethyl-3-oxobutyl)acrylamide oligomer [RF-(DOBAA)n-RF]/silica gel nanocomposite, which was prepared by reaction of the corresponding fluorinated oligomer with tetraethoxysilane and silica gel nanoparticles under alkaline conditions, exhibited no weight loss even at 800 °C equal to the original silica gel, although the corresponding parent RF-(DOBAA)n-RF oligomer was completely degraded at 600 °C. Thermogravimetric analyses/mass spectra of fluorinated nanocomposite showed that this nanocomposite decomposed around 280 °C to afford CO2 and H2O as the major evolved gaseous products including some minor fluoro- and hydrocarbons. X-ray photoelectron spectroscopy analyses also showed that the contents of C, F, and Si atoms in RF-(DOBAA)n-RF/SiO2 nanocomposite after the calcination at 800 °C were similar to those before the calcination. These findings suggest that the evolved gaseous products should be encapsulated quantitatively into nanometer-size-controlled silica matrices to give the fluorinated silica gel nanocomposite with no weight loss even at 800 °C equal to the original silica gel.

Keywords

Fluorinated oligomer Silica gel Nanocomposite No weight loss TG/Mass XPS 

Notes

Acknowledgement

We thank S. Nagasawa (Bruker AXS. K. K., Japan) for TG/Mass observation and Y. Yoshida (Kratos Analytical, Japan) for XPS observation. This work was partially supported by a grant-in-aid for Scientific Research from the Ministry of Education, Science, Sports and Culture, Japan.

References

  1. 1.
    Judeinstein P, Sanchez C (1996) J Mater Chem 6:511–525CrossRefGoogle Scholar
  2. 2.
    Wen J, Wilkes GL (1996) Chem Mater 8:1667–1681CrossRefGoogle Scholar
  3. 3.
    Laine RM, Sanchez C, Brinker CJ, Giannelis E (1998) Organic–inorganic hybrid materials. Materials Research Society, Warrendale, PA, USAGoogle Scholar
  4. 4.
    Brinker CJ, Scherer GW (1990) Sol–gel science. Academic, BostonGoogle Scholar
  5. 5.
    Misra M, Guest A, Tilley M (1998) Surf Coat Int 81:594–595Google Scholar
  6. 6.
    Hua Z, Qiu K-Y (1997) Polymer 31:521–526Google Scholar
  7. 7.
    Pedroso MAS, Dias ML, San Gil RAS, Mothe CG (2003) Colloid Polym Sci 281:19–26CrossRefGoogle Scholar
  8. 8.
    Matejka L, Plestil J (1997) Macromol Symp 122:191–196Google Scholar
  9. 9.
    Juangvanich N, Maurite KA (1998) J Appl Polym Sci 67:1799–1810CrossRefGoogle Scholar
  10. 10.
    Johns K, Stead G (2000) J Fluorine Chem 104:5–18CrossRefGoogle Scholar
  11. 11.
    Ameduri B, Boutevin B (2000) J Fluor Chem 104:53–62CrossRefGoogle Scholar
  12. 12.
    Berret J-F, Calvet D, Collet A, Viguier M (2003) Curr Opin Colloid Interface Sci 8:296–306CrossRefGoogle Scholar
  13. 13.
    Kujawa P, Goh CCE, Calvet D, Winnik FM (2001) Macromolecules 34:6387–6395CrossRefGoogle Scholar
  14. 14.
    Imae T (2003) Curr Opin Colloid Interface Sci 8:307–314CrossRefGoogle Scholar
  15. 15.
    Andruzzi L, Chiellini E, Galli G, Li X, Kang SH, Ober CK (2002) J Mater Chem 12:1684–1692CrossRefGoogle Scholar
  16. 16.
    Imae T, Tabuchi H, Funayama K, Sato A, Nakamura T, Amaya N (2000) Colloid Surf A Physicochem Eng Asp 167:73–81CrossRefGoogle Scholar
  17. 17.
    Jankova K, Hvilsted S (2005) J Fluorine Chem 126:241–250CrossRefGoogle Scholar
  18. 18.
    Lebreton P, Ameduri B, Boutevin B, Corpart J-M (2002) Macromol Chem Phys 203:522–537CrossRefGoogle Scholar
  19. 19.
    Sawada H (1996) Chem Rev 96:1779–1808PubMedCrossRefGoogle Scholar
  20. 20.
    Sawada H, Kawase T (2001) Kobunshi Ronbunshu 58:147–160Google Scholar
  21. 21.
    Sawada H, Kawase T (2001) Kobunshi Ronbunshu 58:255–266Google Scholar
  22. 22.
    Sawada H (2000) J Fluorine Chem 105:219–220CrossRefGoogle Scholar
  23. 23.
    Harmer MK, Farneth WE, Sun Q (1996) J Am Chem Soc 118:7708–7715CrossRefGoogle Scholar
  24. 24.
    Cho J-W, Sul K-I (2001) Fiber Polym 2:135–140Google Scholar
  25. 25.
    Yano S, Okubo N, Takahashi K (1996) Macromol Symp 108:270–289Google Scholar
  26. 26.
    Fabbri P, Messori M, Montecchi M, Nannarone S, Pasquali L, Pilati F, Tonelli C, Toselli M (2006) Polymer 47:1055–1062CrossRefGoogle Scholar
  27. 27.
    Sawada H, Narumi T, Kajiwara A, Ueno K, Hamazaki K (2006) Colloid Polym Sci 284:551–555CrossRefGoogle Scholar
  28. 28.
    Gregg SJ, Sing KS, Sing W (1982) Adsorption, surface areas and porosity, 2nd edn. Academic, New YorkGoogle Scholar
  29. 29.
    Sawada H, Koizumi M, Tojo T, Ohnishi T, Tomoita T (2005) Polym Adv Technol 16:459–465CrossRefGoogle Scholar
  30. 30.
    Welton T (1999) Chem Rev 99:2071–2084PubMedCrossRefGoogle Scholar
  31. 31.
    Sawada H, Yoshino Y, Kurachi M, Kawase T, Takishita K, Tanedani T (2000) Polymer 41:397–4000CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hideo Sawada
    • 1
  • Tamikazu Narumi
    • 1
  • Shun Kodama
    • 1
  • Motohisa Kamijo
    • 2
  • Ryou Ebara
    • 3
  • Masashi Sugiya
    • 3
  • Yasukazu Iwasaki
    • 2
  1. 1.Department of Frontier Material Chemistry, Faculty of Science and TechnologyHirosaki UniversityHirosakiJapan
  2. 2.Nissan Research CenterNissan Motor Co., Ltd.Yokosuka-shiJapan
  3. 3.Research and Development DivisionNippon Chemical Industrial Co., Ltd.TokyoJapan

Personalised recommendations