Colloid and Polymer Science

, Volume 285, Issue 8, pp 923–930

Synthesis and surface properties of PDMS–acrylate emulsion with gemini surfactant as co-emulsifier

  • Xiaobo Deng
  • Rong Luo
  • Hualin Chen
  • Bailing Liu
  • Yujun Feng
  • Yuhai Sun
Original Contribution

Abstract

Composite latex particles of acrylate and polydimethylsiloxane (PDMS) with high PDMS content was prepared by emulsion copolymerization and characterized by particle size analyzer, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR). With gemini surfactant as the co-emulsifier in the system, the PDMS content in the system reached 50%, which was far higher than the other reported values. Through the characterization of the particle size analyzer, the particle size augmented with the increase of the amount of PDMS, which could be said that the polysiloxane had participated into the reaction and had been introduced into the colloid particle. The results of FTIR indicated that almost all the monomer had been exhausted in the reaction because there was no C=C and D4 characteristic peaks in the spectrum. Besides the surface properties also were measured by surface tension analysis, water absorption, and the static contact angle, it could be found that with the increase of polysiloxane content, the excellent properties acquired by PDMS were clearly revealed by the findings, such as the decrease of surface tension and water absorption, and the increase of static contact angle. All the measurements were consistent with the conclusion that the composite latex particles of polysiloxane and acrylate with high siloxane content had been prepared successfully.

Keywords

PDMS Acrylate High content Gemini surfactant 

References

  1. 1.
    Turner JS, Cheng YL (2000) Macromolecules 33:3714CrossRefGoogle Scholar
  2. 2.
    Lim KT, Webber SE, Johnston KP (1999) Macromolecules 32:2811CrossRefGoogle Scholar
  3. 3.
    Brown DA, Price GJ (2001) Polymer 42:4767CrossRefGoogle Scholar
  4. 4.
    Chang TC, Liao C, Wu KJ (1998) Polym Sci A Polym Chem 36:2521CrossRefGoogle Scholar
  5. 5.
    Chen J, Gardella JA (1998) Macromolecules 31:9328CrossRefGoogle Scholar
  6. 6.
    Park HS, Yang IM, Wu JP et al (2001) J Appl Polym Sci 81:1614CrossRefGoogle Scholar
  7. 7.
    Medda SK, Kundu D, De G (2003) J Non-Cryst Solids 318:149CrossRefGoogle Scholar
  8. 8.
    Bauer F, Glasel HJ, Deccker U et al (2003) Prog Org Coat 47:147CrossRefGoogle Scholar
  9. 9.
    Lin MT, Chu FX, Guyot A et al (2005) Polymer 46:1331CrossRefGoogle Scholar
  10. 10.
    He WD, Cao CT, Pan CY (1996) Polym Int 39:31–36CrossRefGoogle Scholar
  11. 11.
    Kan CY, Zhu XL, Yuan Q et al (1996) Polym Adv Technol 8:631CrossRefGoogle Scholar
  12. 12.
    He WD, Cao CT, Pan CY (1996) J Appl Polym Sci 61:383CrossRefGoogle Scholar
  13. 13.
    Yu ZQ, Ni PH, Li JA et al (2004) Colloids and surfaces, A. Physicochem Eng Asp 242:9CrossRefGoogle Scholar
  14. 14.
    Rabinovich YI, Kanicky JR, Pandey S et al (2005) J colloid Interface Sci 288:583CrossRefGoogle Scholar
  15. 15.
    Menger FM, Bessie N, Mbadugha (2001) J Am Chem Soc 113:875CrossRefGoogle Scholar
  16. 16.
    Zana R (2002) Adv Colloid Interface Sci 97:205CrossRefGoogle Scholar
  17. 17.
    Ha JW, Park IJ, Lee SB et al (2002) Macromolecules 35:6811CrossRefGoogle Scholar
  18. 18.
    Okubo M, Izumi J (1999) Colloids and surfaces A: Physicochem Eng Asp 153:297CrossRefGoogle Scholar
  19. 19.
    Caruso F (2001) Adv Mater 13:11CrossRefGoogle Scholar
  20. 20.
    Tunc I, Suzer S, Correa MA et al (2005) J Phys Chem B (Lett) 109:7597CrossRefGoogle Scholar
  21. 21.
    Hoener CF, Allan KA, Bard AJ et al (1992) J Phys Chem 96:3812CrossRefGoogle Scholar
  22. 22.
    Cao YW, Banin UJ (2000) Am Chem Soc 122:9692CrossRefGoogle Scholar
  23. 23.
    Chen MS, Goodman DW (2004) Science 306:252CrossRefGoogle Scholar
  24. 24.
    Lee YJ, Akiba I, Akiyama S (2002) J Appl Polym Sci 86:1736CrossRefGoogle Scholar
  25. 25.
    Soni SS, Sastry NV, Aswal VK et al (2002) J Phys Chem B 106:2606CrossRefGoogle Scholar
  26. 26.
    Butler JH, CroninM, Anderson KM et al (2001) J Am Chem Soc 123:8887CrossRefGoogle Scholar
  27. 27.
    Yamahas GO, Brisdon BJ, Maxwell M et al (2001) J Appl Polym Sci 82:808CrossRefGoogle Scholar
  28. 28.
    Svitova T, Theodoly O, Christiano S et al (2002) Langmuir 18:6821CrossRefGoogle Scholar
  29. 29.
    Cabanelas JC, Prolongo SG, Serrano B et al (2003) J Mater Process Technol 143–144:311CrossRefGoogle Scholar
  30. 30.
    El-Naggar AM, Zohdy MH, Mohammed SS et al (2003) Nucl Instrum Methods Phys Res 201:595CrossRefGoogle Scholar
  31. 31.
    Jae HP, You HB (2002) Biomaterials 23:1797CrossRefGoogle Scholar
  32. 32.
    Feng L, Li S, Li Y et al (2002) Adv Mater 14:1857CrossRefGoogle Scholar
  33. 33.
    Erbil HY, Demirel AL, Avcý Y et al (2003) Science 299:1377CrossRefGoogle Scholar
  34. 34.
    Ma M, Hill RM, Lowery JL et al (2005) Langmuir 21:5549CrossRefGoogle Scholar
  35. 35.
    Jae HP, You HB (2002) Biomaterials 23:1797CrossRefGoogle Scholar
  36. 36.
    Cavic BA, Thompson LM (2000) Anal Chem 72:1523CrossRefGoogle Scholar
  37. 37.
    Chen H, Michael AB, Heather S (2004) Biomaterials 25:2273Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Xiaobo Deng
    • 1
  • Rong Luo
    • 1
  • Hualin Chen
    • 1
  • Bailing Liu
    • 1
  • Yujun Feng
    • 1
  • Yuhai Sun
    • 1
  1. 1.Chengdu Institute of Organic Chemistry, The Graduate School of CASChinese Academy of SciencesChengduPeople’s Republic of China

Personalised recommendations