Colloid and Polymer Science

, Volume 285, Issue 7, pp 729–736 | Cite as

Functionalization of silicon nanoparticles via hydrosilylation with 1-alkenes

  • Jürgen Nelles
  • Dorota Sendor
  • Andre Ebbers
  • Frank Martin Petrat
  • Hartmut Wiggers
  • Christof Schulz
  • Ulrich Simon
Original Contribution


Studies focusing on the functionalization of the surface of free silicon nanoparticles are presented. This functionalization is applied to hydrogen-terminated silicon nanoparticles to evaluate how far the well-known solution-phase chemistry of thermal-, radical-, Lewis acid- and UV light-mediated hydrosilylation can be applied to the surface chemistry of silicon nanoparticles. The efficiencies of hydrosilylation for thermal-, radical- and Lewis acid-mediated reactions on silicon nanoparticles surfaces, deduced from the intensity of the ν(Si–H) absorption, are found to be comparable.


Hydrosilylation Silicon nanoparticles Surface functionalization 



This project is co-financed by the European Union and is financially supported by the state of North Rhine-Westphalia in Germany. The authors would like to thank Christian Brinkmöller for his support.


  1. 1.
    Buriak JM (1999) Chem Commun 12:1051CrossRefGoogle Scholar
  2. 2.
    Hirschman KD, Tsybeskov L, Duttagupta SP, Fauchet SP (1996) Nature 384:338CrossRefGoogle Scholar
  3. 3.
    Sailor MJ, Lee EJ (1997) Adv Mater 9:783CrossRefGoogle Scholar
  4. 4.
    Lee EJ, Bitner TW, Ha JS, Shane MJ, Sailor MJ (1996) J Am Chem Soc 118:5375CrossRefGoogle Scholar
  5. 5.
    Linford MR, Fenter P, Eissenberger PM, Chidsay CED (1995) J Am Chem Soc 117:3145CrossRefGoogle Scholar
  6. 6.
    Sieval AB, Demirel AL, Nissink JWM, Linford MR, Maas J, Jeu WHD, Zuilhof H, Sudholter EJR (1998) Langmuir 14:1759CrossRefGoogle Scholar
  7. 7.
    Buriak JM, Stewart MP, Geders TW, Allen MJ, Choi HC, Smith J, Raftery D, Canham LT (1999) J Am Chem Soc 121:11491CrossRefGoogle Scholar
  8. 8.
    Li H-L, Fu AP, Fu DS, Guo GL, Gui LL, Tang YQ (2002) Langmuir 18:3198CrossRefGoogle Scholar
  9. 9.
    Schmelzer JM, Lon AP, Stewart MP, Buriak JM (2002) Langmuir 18:2971CrossRefGoogle Scholar
  10. 10.
    Wayner DD, Wolkow RA (2002) J Chem Soc Perkin Trans 2(8):23Google Scholar
  11. 11.
    Buriak JM (2002) Chem Rev 102:1271CrossRefGoogle Scholar
  12. 12.
    Wiggers H, Starke R, Roth P (2001) Chem Eng Technol 24:261CrossRefGoogle Scholar
  13. 13.
    Higashi GS, Chabal YJ, Trucks GW, Raghavachari K (1990) Appl Phys Lett 56:656CrossRefGoogle Scholar
  14. 14.
    Knipping J, Wiggers H, Rellingshaus B, Roth P, Konjhodzic D, Meier C (2004) J Nanosci Nanotech 4:1039CrossRefGoogle Scholar
  15. 15.
    Hediger DHJ (1971) Infrarotspektroskopie. Akademische Verlagsgesellschaft, Frankfurt a MGoogle Scholar
  16. 16.
    Stewart MP, Robins EG, Geders TW, Allen MJ, Choi HC, Buriak JM (2000) Phys Status Solidi A 182:109CrossRefGoogle Scholar
  17. 17.
    Pawlenko S (1986) Organosilicon chemistry. Walter de Gruyter & Co., BerlinGoogle Scholar
  18. 18.
    Cerofolini GF, Galati C, Reina S, Renna L (2003) Mater Sci Eng C 23:253CrossRefGoogle Scholar
  19. 19.
    Lewis LN (1990) J Am Chem Soc 112:5998CrossRefGoogle Scholar
  20. 20.
    Zazzera LA, Evans JF, Deruelle M, Tirrell M, Kessel CR, McKeown P (1997) J Electrochem Soc 144:2184CrossRefGoogle Scholar
  21. 21.
    Corey JY (1975) J Am Chem Soc 97:3237CrossRefGoogle Scholar
  22. 22.
    Lambert JB, Zhao Y, Zhang SM (2001) J Phys Org Chem 14:370CrossRefGoogle Scholar
  23. 23.
    Buriak JM, Allen MJ (1998) J Am Chem Soc 120:1339CrossRefGoogle Scholar
  24. 24.
    Schmeltzer JM, Porter LA, Stewart MP, Buriak JM (2002) Langmuir 18:2971CrossRefGoogle Scholar
  25. 25.
    Katz HE (1985) J Org Chem 50:5027CrossRefGoogle Scholar
  26. 26.
    Hammond H (1955) J Am Chem Soc 77:334CrossRefGoogle Scholar
  27. 27.
    Song JH, Sailor MJ (1998) J Am Chem Soc 120:2376CrossRefGoogle Scholar
  28. 28.
    Gurtner Ch, Wun AW, Sailor MJ (1999) Angew Chem 111:2132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Jürgen Nelles
    • 1
  • Dorota Sendor
    • 1
  • Andre Ebbers
    • 2
  • Frank Martin Petrat
    • 2
  • Hartmut Wiggers
    • 3
  • Christof Schulz
    • 3
  • Ulrich Simon
    • 1
  1. 1.Institute of Inorganic ChemistryRWTH AachenAachenGermany
  2. 2.Degussa AGCreavis Technologies and InnovationMarlGermany
  3. 3.Institute of Combustion and Gas DynamicUniversity Duisburg-EssenDuisburgGermany

Personalised recommendations