Colloid and Polymer Science

, Volume 285, Issue 5, pp 569–574 | Cite as

Poly(ethylene oxide)-coated polyamide nanoparticles degradable by glutathione

  • Martin HrubýEmail author
  • Čestmír Koňák
  • Karel Ulbrich
Short Communication


Poly(adipoyl chloride-alt-cystamine) nanoparticles covalently coated with poly(ethylene oxide) (M w = 2,000 or 5,000) were prepared as a model of glutathione-degradable drug, protein, or deoxyribonucleic acid delivery systems. The polyamide forming the micellar core has disulfide bonds in the main chain and thus its degradation gives low molecular weight products. The degradation of nanoparticles by the action of glutathione in the reduced or oxidized forms was monitored by time dependencies of the light scattering intensity at 37 °C in media modeling intracellular environment. The lifetimes of nanoparticles were determined. The reductive degradation of the nanoparticles by the reaction with reduced glutathione is an order of magnitude faster than their spontaneous degradation. The effect of nanoparticle concentration and solution pH was also investigated.


Disulfide bond Nanoparticles Glutathione Poly(ethylene oxide) Light scattering 



Financial support of the Grant Agency of the Academy of Sciences of the Czech Republic (grants A100500501, A4050403, and A400480616) and of the Research Centers program of the Ministry of Education, Youth and Sports (grant no. IM 463 560 8802) is gratefully acknowledged.


  1. 1.
    Bernkop-Schnurch A (2005) Adv Drug Deliv Rev 57:1569CrossRefGoogle Scholar
  2. 2.
    Bremer HJ, Duran M, Kameling JP (1981) Glutathione. In: Bremer HJ, Duran M, Kamerling JP (eds) Disturbances of amino acid metabolism: clinical chemistry and diagnosis. Urban & Schwarzenberg, Baltimore-Munich, pp 80–82Google Scholar
  3. 3.
    Dufresne MH, Gauthier MA, Leroux JC (2005) Bioconjugate Chem 16:1027CrossRefGoogle Scholar
  4. 4.
    Aliyar HA, Hamilton PD, Ravi N (2005) Biomacromolecules 6:204CrossRefGoogle Scholar
  5. 5.
    SoltysCE, Bian J, Roberts MF (1993) Biochemistry 32:9545CrossRefGoogle Scholar
  6. 6.
    Chawla RK, Lewis FW, Kutner MH (1984) Gastroenterology 87:770Google Scholar
  7. 7.
    Li PP, Nakanishi A, Fontanes V, Kasamatsu H (2005) J Virol 79:3859CrossRefGoogle Scholar
  8. 8.
    Ishii Y, Tanaka K, Kanda T (2003) Virology 308:128CrossRefGoogle Scholar
  9. 9.
    Jakeš J (1995) Collect Czechoslov Chem Commun 60:1781CrossRefGoogle Scholar
  10. 10.
    Provencher SW (1982) Comput Phys Commun 27:229CrossRefGoogle Scholar
  11. 11.
    Lee ES, Shin HJ, Na K, Bae YHJ (2003) Control Release 90:363CrossRefGoogle Scholar
  12. 12.
    Hrubý M, Koňák Č, Ulbrich K (2005) J Appl Polym Sci 95:201CrossRefGoogle Scholar
  13. 13.
    Tuzar Z, Koňák Č, Štěpánek P, Pleštil J, Kratochvíl P, Procházka K (1990) Polymer 31:2118CrossRefGoogle Scholar
  14. 14.
    Tuzar Z, Kratochvíl P (1973) Makromol Chem 170:177CrossRefGoogle Scholar
  15. 15.
    Tuzar Z, Bahadur P, Kratochvíl P (1981) Makromol Chem 182:1751CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Martin Hrubý
    • 1
    Email author
  • Čestmír Koňák
    • 1
  • Karel Ulbrich
    • 1
  1. 1.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations