Colloid and Polymer Science

, Volume 285, Issue 3, pp 283–292 | Cite as

In situ metal particle preparation in cross-linked poly(2-acrylamido-2-methyl-1-propansulfonic acid) hydrogel networks

Original Contribution


Anionic hydrogels of poly(2-acrylamido-2-methyl-1-propansulfonic acid) (p(AMPS)) were prepared with a different amount of cross-linker extent and used for in situ preparation of magnetic and metal particles. The metal particles with various sizes were obtained inside the three-dimensional polymer matrixes by absorption of the corresponding metal ions from their aqueous solutions followed by the reduction in the presence of strong reducing agent. In addition to iron particles, cobalt, nickel, copper nanoparticles, and CdS, quantum dot has been prepared by utilizing hydrogel matrix as a template for inorganic/organic composite synthesis. It was observed that the amount of cross-linkers (0.5%, 0.75%, and 1% with respect to monomer mole ratio) used in this study for bare p(AMPS) has not significantly influenced the morphology of the hydrogels or the size of the iron particles while having great effect on swelling of p(AMPS) hydrogels in water. Copolymeric hydrogels of AMPS with acrylamide in different composition were also prepared. Thermogravimetric analysis and transmission electron microscopy results showed that the AMPS content of the copolymeric hydrogel has great impact on both the metal ion loading capacity and the size of the resultant metal particles.


Nanoparticle Nanocomposites Magnetic field sensitive hydrogels 


  1. 1.
    Landfester K (2001) Adv Mater 13:765CrossRefGoogle Scholar
  2. 2.
    Kane SR, Cohen ER (1999) Chem Mater 11:90CrossRefGoogle Scholar
  3. 3.
    Joly S, Kane R, Radzilowski L, Wang T, Wu A, Cohen ER, Thomas LE, Rubner FM (2000) Langmuir 16:1354CrossRefGoogle Scholar
  4. 4.
    Dante S, Hou Z, Risbud S, Stroeve LP (1999) Langmuir 15:2176CrossRefGoogle Scholar
  5. 5.
    Dai J, Bruening LM (2002) Nano Lett 2:497CrossRefGoogle Scholar
  6. 6.
    Ménager C, Sandre O, Mangili J, Cabuil V (2004) Polymer 45:2475CrossRefGoogle Scholar
  7. 7.
    Bekiari V, Pagonis K, Bokias G, Lianos P (2004) Langmuir 20:7972CrossRefGoogle Scholar
  8. 8.
    Peppas A N, Leobandung WJ (2004) Biomater Sci Polymer Edn 15:125CrossRefGoogle Scholar
  9. 9.
    Mandracchia D, Pitarresi G, Palumbo BS, Carlisi B, Giammona G (2004) Biomacromolecules 5:1973CrossRefGoogle Scholar
  10. 10.
    Xulu PM, Filipcsei G, Zrínyi M (2000) Macromolecules 33:1716CrossRefGoogle Scholar
  11. 11.
    Flynn L, Dalton PD, Shoichet MS (2003) Biomaterials 24:4265CrossRefGoogle Scholar
  12. 12.
    Song J, Saiz E, Bertozzi CR (2003) J Am Chem Soc 125:1236CrossRefGoogle Scholar
  13. 13.
    Hu Y, Chen J, Chen W, Ning J (2004) Mater Lett 58:2911CrossRefGoogle Scholar
  14. 14.
    Chaggar RS, Hall AJ, Miller JD (1996) Polymer 37:5313CrossRefGoogle Scholar
  15. 15.
    Kroll E, Winnik FM (1996) Chem Mater 8:1594CrossRefGoogle Scholar
  16. 16.
    Pardo-Yissar V, Gabai R, Shipway AN, Bourenko T, Willner I (2001) Adv Mater 13:1320CrossRefGoogle Scholar
  17. 17.
    Shipway AN, Willner I (2001) Chem Commun 20:2035CrossRefGoogle Scholar
  18. 18.
    López D, Cendoya I, Mijangos C (2001) Macromol Symp 166:173CrossRefGoogle Scholar
  19. 19.
    Lao L, Ramanujan VR (2004) J Mater Sci Mater Med 15:1061CrossRefGoogle Scholar
  20. 20.
    Chatterjee J, Haik Y, Chen CJ (2003) Colloid Polym Sci 281:892CrossRefGoogle Scholar
  21. 21.
    Juliac E, Mitsumata T, Taniguchi T, Iwakura K, Koyama K (2003) J Phys Chem B 107:5426CrossRefGoogle Scholar
  22. 22.
    Sauzedde F, Elaïssari A, Pichot C (1999) Colloid Polym Sci 277:846CrossRefGoogle Scholar
  23. 23.
    Gu S, Shiratori T, Konno M (2003) Colloid Polym Sci 281:1076CrossRefGoogle Scholar
  24. 24.
    Takafuji M, Ide S, Ihara H, Xu Z (2004) Chem Mater 16:1977CrossRefGoogle Scholar
  25. 25.
    Zhang J, Coombs N, Kumacheva E, Lin Y, Sergant EH (2002) Adv Mater 14:1756CrossRefGoogle Scholar
  26. 26.
    Xu S, Zhang J, Paquet C, Lin Y, Kumacheva E (2003) Adv Funct Mater 3:468CrossRefGoogle Scholar
  27. 27.
    Wang TC, Rubner MF, Cohen RE (2002) Langmuir 18:3370CrossRefGoogle Scholar
  28. 28.
    Brandrup J, Immergut EG, Grulke EA (1999) Polymer handbook, 4th edn. Wiley, New YorkGoogle Scholar
  29. 29.
    Wang C, Flynn NT, Langer R (2004) Adv Mater 16:1074CrossRefGoogle Scholar
  30. 30.
    Kato N, Oishi A, Takahashi F (1998) Mater Eng C 6:291CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Chemical and Biomolecular EngineeringTulane UniversityNew OrleansUSA
  2. 2.Deparment of ChemistryCanakkale Onsekiz Mart UniversityCanakkaleTurkey

Personalised recommendations