Advertisement

Colloid and Polymer Science

, Volume 284, Issue 4, pp 422–428 | Cite as

Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property

  • Erjun Tang
  • Guoxiang Cheng
  • Xingshou Pang
  • Xiaolu Ma
  • Fubao Xing
Short communication

Abstract

Nano-ZnO/poly(methyl methacrylate)(PMMA) composite latex microspheres were synthesized by in-site emulsion polymerization. The interfacial compatibility between nano-ZnO particles and PMMA were improved by treating the surface of nano-ZnO particles hydrophobically using methacryloxypropyltrimethoxysilane (MPTMS). TEM indicated that nano-ZnO particles present in nanosphere and have been encapsulated in the PMMA phase. FT-IR confirmed that MPTMS reacted with the nano-ZnO particle and copolymerized with MMA. It was clearly found from SEM that ZnO nanoparticles can be homogeneously dispersed in the PVC matrix. The absorbance spectrum of the nanocomposite polymer suggested that increasing the amount of nano-ZnO in composite particles could enhance the UV-shielding properties of the polymers. The nano-ZnO/PMMA composite particle could eliminate aggregation of ZnO nanoparticle and improve its compatibility with organic polymer. This means that the composite particles can be widely applied in lots of fields.

Keywords

Nano-ZnO Nanocomposite Poly(methyl methacrylate) In-site emulsion polymerization Methacryloxypropyltrimethoxysilane (MPTMS) 

References

  1. 1.
    Luna-Xavier JL, Bourgeat-Lami E, Guyot A (2001) Colloid Polym Sci 279:947CrossRefGoogle Scholar
  2. 2.
    Hayashi S, Fujiki K, Tsubokawa N (2000) React Funct Polym 46:193CrossRefGoogle Scholar
  3. 3.
    Furusawa K, Nagashima K, Anzai C (1994) Colloid Polym Sci 272:1104CrossRefGoogle Scholar
  4. 4.
    Fleming MS, Mandal TK, Walt DR (2001) Chem Mater 13:2210CrossRefGoogle Scholar
  5. 5.
    Duguet E, Abboud M, Morvan F, Foutanille M (2000) Macromol Symp 151:365CrossRefGoogle Scholar
  6. 6.
    Erdem B, Sudol ED, Dimonie VL, El-Aasser M (2000) J Polym Sci Polym Chem 38:4419CrossRefGoogle Scholar
  7. 7.
    Khan AA, Mezbaul AM (2003) React Funct Polym 55:277CrossRefGoogle Scholar
  8. 8.
    Goyanes SN, Marconi JD, Konig PG, Matteo CL, Rubiolo GH (2001) Polymer 42:5267CrossRefGoogle Scholar
  9. 9.
    Pang XS, Cheng GX, Lu SL (2004) J Appl Polym Sci 92:2675CrossRefGoogle Scholar
  10. 10.
    Kawaguchi H (2001) Prog Polym Sci 25:1171CrossRefGoogle Scholar
  11. 11.
    Gupta PK, Hung TC, Lam FC, Perrier DG (1998) Int J Pharm 43:167CrossRefGoogle Scholar
  12. 12.
    Xing FB, Cheng GX, Yang BX, Ma LR (2004) J Appl Polym Sci 91:2669CrossRefGoogle Scholar
  13. 13.
    Sawai J (2003) J Microbiol Methods 54:177PubMedCrossRefGoogle Scholar
  14. 14.
    Xiong MN, Gu GX, You B (2003) J appl Polym Sci 90:1923CrossRefGoogle Scholar
  15. 15.
    Espiard Ph, Guyot A (1995) Polymer 36:4391CrossRefGoogle Scholar
  16. 16.
    Lipatov YS, Kosyanchuk LV, Nesterov (2003) Polym Int 52:664CrossRefGoogle Scholar
  17. 17.
    Yu DG, An JH (2004) Colloids Surf A Physicochem Eng Aspects 237:87CrossRefGoogle Scholar
  18. 18.
    Lu SL, Cheng GX, Pang XS (2003) J Appl Polym Sci 89:3790CrossRefGoogle Scholar
  19. 19.
    Espiard Ph, Guyot A (1995) Polymer 36:4385CrossRefGoogle Scholar
  20. 20.
    Fujihara S, Naito H, Kimura T (2001) Thin Solid Films 389:297CrossRefGoogle Scholar
  21. 21.
    Nyffenegger RM, Craft B, Shaaban M, Gorer S, Erley G (1998) Chem Mater 10:1120CrossRefGoogle Scholar
  22. 22.
    Wang Y, Herron N (1991) J Phys Chem 95:525CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Erjun Tang
    • 1
  • Guoxiang Cheng
    • 1
  • Xingshou Pang
    • 1
  • Xiaolu Ma
    • 1
  • Fubao Xing
    • 1
  1. 1.School of materials science and engineeringTianjin UniversityTianjinChina

Personalised recommendations