Colloid and Polymer Science

, Volume 284, Issue 5, pp 459–467 | Cite as

Control of reactions between surfactant reagents in miniemulsions. Surface nanoreactors

  • Valentina V. Vasilevskaya
  • Artem A. Aerov
  • Alexei R. Khokhlov
Original contribution

Abstract

Emulsions may be used to speed up reactions of surface-active reagents. In this paper, a theoretical analysis of a simple catalytic reaction (A + BP + B) is performed, where the substrate A in the presence of the catalyst B in an emulsion is converted into the product P, and both the substrate A and the catalyst B are surfactants. It was shown that, because molecules A and B are concentrated in surface layers of the emulsion, these layers act as nanoreactors ensuring a significant acceleration of the catalytic reaction within a certain range of emulsion droplet sizes. The reaction rate depends significantly on the emulsion droplet’s size and there exists an optimal droplet size at which the reaction acceleration is maximal. If the product of the reaction is not surface-active, the reaction rate can remain practically unchanged up to virtually complete substrate conversion. Besides, it was shown that the Michaelis–Menten-type dependence of the reaction rate on the substrate concentration (i.e., the increase in the rate with subsequent saturation) can be observed in the system under consideration.

Keywords

Nanoreactors Surfactant reagent Emulsions 

References

  1. 1.
    Bronstein LM, Sidorov SN, Valetsky PM (2004) Russ Chem Rev 73:501CrossRefGoogle Scholar
  2. 2.
    Wang G, Kuroda K, Enoki T, Grosberg A, Masamune S, Oya T, Takeoka Y, Tanaka T (2000) Proc Natl Acad Sci USA 97:9861CrossRefGoogle Scholar
  3. 3.
    Vasilevskaya VV, Khokhlov AR (2002) Macromol Theory Simul 11:623, Vasilevskaya VV, Aerov AA, Khokhlov AR (2004) J Chem Phys 120:9321Google Scholar
  4. 4.
    Zhao M, Sun L, Crooks RM (1998) J Am Chem Soc 120:4877CrossRefGoogle Scholar
  5. 5.
    Balogh L, Tomalia DA (1998) J Am Chem Soc 120:7355CrossRefGoogle Scholar
  6. 6.
    Gröhn F, Bauer BJ, Akpalu YA, Jackson CL, Amis EJ (2000) Macromolecules 33:6042CrossRefGoogle Scholar
  7. 7.
    Berezin IV, Martinek K, Yasimirskii AK (1973) Uspekhi khimii 10:1729Google Scholar
  8. 8.
    Zakharova LYa, Kudryavtseva LA, Shagidullina RA (2001) J Molec Liquids 91:193CrossRefGoogle Scholar
  9. 9.
    Zakharova LYa, Kudryavtseva LA, Shagidullina RA, Valeeva FG (2001) J Molec Liquids 94:79CrossRefGoogle Scholar
  10. 10.
    Candan F, Pabon M, Anquetil J-Y (1999) Coll Surf A 153:47CrossRefGoogle Scholar
  11. 11.
    De la Vega R, Perez-Tajeda P, Lopez-Cornejo P, Sanchez F (2004) Langmuir 20:1558CrossRefGoogle Scholar
  12. 12.
    Husein MM, Weber ME, Vera JH (2000) Langmuir 16:9159CrossRefGoogle Scholar
  13. 13.
    Pereira RR, Zanette D, Faruk J (1990) J Phys Chem 94:356CrossRefGoogle Scholar
  14. 14.
    Goldar A, Sikorav J-L (2004) Euro Phys J E 14:211CrossRefGoogle Scholar
  15. 15.
    Okhapkin IM, Makhaeva EE, Khokhlov AR (2005) Coll Polym Sci (to be published)Google Scholar
  16. 16.
    Vasilevskaya VV, Khalatur PG, Khokhlov AR (2003) Macromolecules 36:10103CrossRefGoogle Scholar
  17. 17.
    Vasilevskaya VV, Klochkov AA, Lazutin AA, Khalatur PG, Khokhlov AR (2004) Macromolecules 37:5444CrossRefGoogle Scholar
  18. 18.
    Aslanov VV, Sheinina LS, Bulgakova RA, Belomestnykh AV (1995) Langmuir 11:3953CrossRefGoogle Scholar
  19. 19.
    Landau LD, Lifshits EM (1976) Statisticheskaya fizika (Statistical Physics). Nauka, MoscowGoogle Scholar
  20. 20.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  21. 21.
    Vasilevskaya VV, Aerov AA, Khokhlov AR (2004) Doklady Phys Chem 298:258CrossRefGoogle Scholar
  22. 22.
    Vol’kenshtein MV (1981) Biofizika. Nauka, MoscowGoogle Scholar
  23. 23.
    Nelson DL, Cox MM (2000) Lehninger principles of biochemistry. Worth, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Valentina V. Vasilevskaya
    • 1
  • Artem A. Aerov
    • 2
  • Alexei R. Khokhlov
    • 1
    • 2
  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Physics DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations