Colloid and Polymer Science

, Volume 284, Issue 2, pp 134–141 | Cite as

Relationship between electrical resistivity and particle dispersion state for carbon black filled poly (ethylene-co-vinyl acetate)/poly (L-lactic acid) blend

  • Arinobu Katada
  • Yose Fachmi Buys
  • Yoichi Tominaga
  • Shigeo Asai
  • Masao Sumita
Original contribution


It is known that the electrical volume resistivity of insulating polymers filled with conductive fillers suddenly decreases at a certain content of filler. This phenomenon is called percolation. Therefore, it is known that controlling resistivity in the semi-conductive region for carbon black (CB) filled composites is very difficult. When poly (ethylene-co-vinyl acetate) (EVA) is used as a matrix, the percolation curve becomes gradual because CB particles disperse well in EVA. In this study, the relationship between the dispersion state of CB particles and electrical resistivity for EVA/poly (L-lactic acid) (PLLA) filled with CB composite was investigated. The apparent phase separation was seen in the SEM photograph. It was predicted that the CB particles located into the EVA phase in the light of thermodynamical consideration, which was estimated from the wetting coefficient between polymer matrix and CB particles. The total surface area per unit mass of dispersed CB particles in the polymer blend matrix was estimated from small-angle X-ray scattering and the volume resistivity decreased with increasing CB content. The values of the surface area of CB particles in CB filled EVA/PLLA (25/75 wt%) and EVA/PLLA (50/50 wt%) polymer blends showed a value similar to that of the CB filled EVA single polymer matrix. In electrical volume resistivity measurement, moreover, the slopes of percolation curves of EVA/PLLA (25/75 wt%) and EVA/PLLA (50/50 wt%) filled with CB composite are similar to that of EVA single polymer filled with CB composite. As a result, it was found that CB particles selectively locate in the EVA phase, and then the particle forms conductive networks similar to the networks in the case of EVA single polymer used as a matrix.


Polymer composite materials Filler Small-angle X-ray scattering (SAXS) Poly(ethylene-co-vinyl acetate) (EVA) Poly(L-lactic acid) (PLLA) 


  1. 1.
    Buche FJ (1972) Appl Phys 43:4837CrossRefGoogle Scholar
  2. 2.
    Buche FJ (1973) Appl Phys 44:532CrossRefGoogle Scholar
  3. 3.
    Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K (1982) J Mater Sci 17:1610CrossRefGoogle Scholar
  4. 4.
    Sumita M, Asai S, Miyadera N, Jojima E, Miyasaka K (1986) Colloid Polym Sci 264:212CrossRefGoogle Scholar
  5. 5.
    Wessling B (1988) Synth Met 27:A83CrossRefGoogle Scholar
  6. 6.
    Lux F (1993) J Mater Sci 28:285CrossRefGoogle Scholar
  7. 7.
    Ando N, Takeuchi M (1998) Thin Solid Films 334:182CrossRefGoogle Scholar
  8. 8.
    Wu G, Zhang C, Miura T, Asai S, Sumita M (2000) J Appl Polym Sci 80:1063CrossRefGoogle Scholar
  9. 9.
    Katada A, Konishi Y, Isogai T, Asai S, Sumita M (2003) J Appl Polym Sci 89:1151CrossRefGoogle Scholar
  10. 10.
    Katada A, Akiyama K, Isogai T, Asai S, Sumita M (2003) Mater Sci Technol (Japan) 40:35Google Scholar
  11. 11.
    Katada A, Isogai T, Sumita M (2003) J Soc Rubber Ind (Japan) 76:375Google Scholar
  12. 12.
    Katada A, Buys YF, Tominaga Y, Asai S, Sumita M (2005) Colloid Polym Sci 283:367CrossRefGoogle Scholar
  13. 13.
    Shout TR, Moffatt D, Huebner W (1991) J Mater Sci 26:145CrossRefGoogle Scholar
  14. 14.
    Xiao Y, Wu G, Ma D (1998) J Appl Polym Sci 67:131CrossRefGoogle Scholar
  15. 15.
    Gajria AM, Dave V, Gross RA, McCarthy SP (1995) Polymer 37:437CrossRefGoogle Scholar
  16. 16.
    Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ (1996) Polymer 26:5849CrossRefGoogle Scholar
  17. 17.
    Zhang L, Goh SH, Lee SY (1997) Polymer 39:4841CrossRefGoogle Scholar
  18. 18.
    Yoon JS, Oh SH, Kim MN, Chin IJ, Kim YH (1999) Polymer 40:2303CrossRefGoogle Scholar
  19. 19.
    Sumita M, Sakata K, Asai S, Miyasaka K (1991) Polym Bull 25:265CrossRefGoogle Scholar
  20. 20.
    Asai S, Sakata K, Sumita M, Miyasaka K (1992) Polym J 24:415CrossRefGoogle Scholar
  21. 21.
    Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka, Miyasaka K (1992) Colloid Polym Sci 270:134CrossRefGoogle Scholar
  22. 22.
    Asai S (1994) Doctor thesis, Tokyo Institute of Technology, Tokyo, JapanGoogle Scholar
  23. 23.
    Gubbels F, Jerome R, Teyssie Ph, Vanlathem E, Deltour R, Calderone A, Parente V, Bredas JL (1994) Macromolecules 27:1972CrossRefGoogle Scholar
  24. 24.
    Gubbels F, Blacher S, Vanlathem E, Jerome R, Deltour R, Brouers F, Teyssie Ph (1995) Macromolecules 28:1559CrossRefGoogle Scholar
  25. 25.
    Brown DS, Warner FP, Wetton RE (1972) Polymer 13:575CrossRefGoogle Scholar
  26. 26.
    Dawkins JV (ed) (1978) Developments in polymer characterization-1. Applied Science publishers, LondonGoogle Scholar
  27. 27.
    Young RJ, Al-khudhairy DH, Thomas AG (1986) J Mater Sci 21:1211CrossRefGoogle Scholar
  28. 28.
    Deslandes Y, Whitemore MK, Bluhm TL, Hokansson A (1988) J Disper Sci Technol 9:235CrossRefGoogle Scholar
  29. 29.
    Zhang C, Yi XS, Asai S, Sumita M (1999) Compos Interfaces 6:28Google Scholar
  30. 30.
    Brunauer S, Emmet PH, Teller E (1938) J Amer Chem Soc 60:309CrossRefGoogle Scholar
  31. 31.
    Akaishi S (2002) Master thesis, Tokyo Institute of Technology, Tokyo, JapanGoogle Scholar
  32. 32.
    Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741CrossRefGoogle Scholar
  33. 33.
    Brandrup J, Immergut EH, Gruike EA (eds) (1999) Polymer handbook. Wiley-Interscience, CanadaGoogle Scholar
  34. 34.
    Otsuka H, Nagasaki Y, Kataoka K (2000) Sci Technol Adv Mater 1:21CrossRefGoogle Scholar
  35. 35.
    Wu S (1982) Polymer interface and adhesion. Marcel Dekker, NYGoogle Scholar
  36. 36.
    Schonhorn H (1966) Nature 210:896CrossRefGoogle Scholar
  37. 37.
    Bradley RH, Sutherland I, Sheng E (1995) Chem Soc Faraday Trans 91:3201CrossRefGoogle Scholar
  38. 38.
    Porod VG (1952) Kolloid Z 125:51CrossRefGoogle Scholar
  39. 39.
    Debye P, Anderson HR, Brumberger H (1957) J Appl Phys 28:679CrossRefGoogle Scholar
  40. 40.
    Guinier A, Fournet G (1955) Small-angle Scattering of X-rays. Wiley, New YorkGoogle Scholar
  41. 41.
    Sichel EK (ed) (1982) Carbon black polymer composites. Marcel Dekker, NYGoogle Scholar
  42. 42.
    Ezquerra TA, Kulescza M, Balta Calleja FJ (1991) Syn Met 41:915CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Arinobu Katada
    • 1
  • Yose Fachmi Buys
    • 1
  • Yoichi Tominaga
    • 1
  • Shigeo Asai
    • 1
  • Masao Sumita
    • 1
  1. 1.Department of Chemistry and Materials ScienceTokyo Institute of TechnologyMeguro-Ku, TokyoJapan

Personalised recommendations