Colloid and Polymer Science

, Volume 283, Issue 11, pp 1246–1252

Tri-component diblock copolymers of poly(ethylene glycol)–poly(ε-caprolactone-co-lactide): synthesis, characterization and loading camptothecin

  • Yan Zhang
  • Changchun Wang
  • Wuli Yang
  • Bin Shi
  • Shoukuan Fu
Short communication Polymer

Abstract

Biodegradable tri-component diblock copolymer was synthesized by bulk copolymerization of ε-caprolactone (CL) and D, L-lactide (LA) in the presence of methoxy poly(ethylene glycol) (MePEG), using stannous octoate as catalyst. Their chemical structure and physical properties were investigated by GPC, NMR, DSC, TGAand XRD. The increase of CL/LA ratio in the diblock copolymer leads to lower Tg, higher decomposition temperature and crystallinity. Nanoparticles formulated from MePEG–poly(CL-co-LA) (PCAE) possess spherical structure, which was characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The DLS results indicate that the particle size increased with the increase of CL/LA ratio and the hydrophobic fragment length in the copolymer. The drug encapsulation efficiency and the drug release behavior in vitro conditions of camptothecin were measured by high performance liquid chromatography (HPLC). The encapsulation efficiency can be achieved as high as 84.4% and the release behavior can be made well-controlled. MePEG–poly(CL-co-LA) nanoparticles might have a great potential as carriers for hydrophobic drugs.

Keywords

Methoxy poly(ethylene glycol)–poly(ε-caprolactone-co-lactide) Diblock copolymer Nanoparticles Camptothecin Drug carrier 

References

  1. 1.
    Grislain L, Couvreur P, Lenaerts V, Roland M (1983) Int J Pharm 15:335CrossRefGoogle Scholar
  2. 2.
    Stolnik S, Illum L, Davis SS (1995) Adv Drug Deliv Rev 16:195CrossRefGoogle Scholar
  3. 3.
    Kataoka K, Harada A, Nagasaki Y (2001) Adv Drug Deliv Rev 53:113CrossRefGoogle Scholar
  4. 4.
    Torchilin VP (2002) Adv Drug Deliv Rev 54:235CrossRefGoogle Scholar
  5. 5.
    Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin VP, Langer R (1994) Science 263:1600CrossRefGoogle Scholar
  6. 6.
    Gref R, Lueck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH (2000) Colloid Surf B Biointerfaces 18:301CrossRefGoogle Scholar
  7. 7.
    Cai Q, Bei JZ, Wang SG (2002) Polymer 43:3585CrossRefGoogle Scholar
  8. 8.
    Kumar N, Ravikumar MNV, Domb AJ (2001) Adv Drug Deliv Rev 53:23CrossRefGoogle Scholar
  9. 9.
    Zhang Y, Zhang QZ, Zha LS et al (2004) Colloid Polym Sci 282:1323CrossRefGoogle Scholar
  10. 10.
    Yamamoto YJ, Nagasaki YK, Kato YK, Sugiyama YC, Kataoka K (2001) J Control Rel 77:27CrossRefGoogle Scholar
  11. 11.
    Yasugi K, Nagasaki Y, Kato M (1999) J Control Rel 62:89CrossRefGoogle Scholar
  12. 12.
    Lucke A, Fustella E, Tessmar J et al (2002) J Control Rel 80(1–3):157CrossRefGoogle Scholar
  13. 13.
    Dong YC, Feng SS (2004) Biomaterials 25:2843CrossRefGoogle Scholar
  14. 14.
    Pitt CG (1990) Biodegradable polymers as drug delivery system. In: Chasin M, Langer R (eds) Marcel Dekker, New York, p 71Google Scholar
  15. 15.
    Shin ILG, Kim SY, Lee YM, Cho Chong S, Sung YK (1998) J Control Rel 51:1CrossRefGoogle Scholar
  16. 16.
    Soo PL, Luo L, Maysinger D, Eisenberg A (2002) Langmuir 18:9996CrossRefGoogle Scholar
  17. 17.
    Li SM, Garreau H, Bernard P, Jonathan MG, Alexandra T, Michel V (2002) Biomacromolecules 3:525CrossRefGoogle Scholar
  18. 18.
    Tobyo M, Gref R, Sanchez A, Langer R, Alonso MJ (1998) Pharm Res 15:270CrossRefGoogle Scholar
  19. 19.
    Liu JB, Xiao YH, Allen C (2004) J Pharm Sci 93(1):132CrossRefGoogle Scholar
  20. 20.
    Jeong Y-I, Cheon J-B, Kim S-H et al (1998) J Control Rel 51:169CrossRefGoogle Scholar
  21. 21.
    Cho HC, Chung DJ, Jeongho A (2004) Biomaterials 25:3733CrossRefGoogle Scholar
  22. 22.
    Jackson JK, Zhang XC, Llewellen S, Hunter WL, Burt HM (2004) Int J Pharm 270:185CrossRefGoogle Scholar
  23. 23.
    Wall ME, Wani MC, Cook CE et al (1966) J Am Chem Soc 88:3888CrossRefGoogle Scholar
  24. 24.
    Potmesil M (1994) Cancer Res 54:1431Google Scholar
  25. 25.
    Giovanellea BC, Hinz HR, Kozieiski AJ et al (1991) Cancer Res 51:3052Google Scholar
  26. 26.
    Beijnen JH (1993) J Chromatogr Biomed Appl 617:111CrossRefGoogle Scholar
  27. 27.
    Mohammadi-Rovshandeh J, Farnia SMF, Sarbolouki MN (2002) J Appl Polym Sci 83:2072CrossRefGoogle Scholar
  28. 28.
    Huang MS, Li S, Coudane J, Vert M (2003) Macromol Chem Phys 204:1994CrossRefGoogle Scholar
  29. 29.
    Lucke A, Tessmar J, Schnell E, Schmeer G, Gopferich A (2000) Biomaterials 21:2361CrossRefGoogle Scholar
  30. 30.
    D‘Antone S, Bignotti F, Sartone L et al (2001) Polym Degrad Stab 74:119CrossRefGoogle Scholar
  31. 31.
    Bignotti F, Penco M, Sartore L et al (2002) Macromol Symposia 180:257CrossRefGoogle Scholar
  32. 32.
    Tuzar Z, Kratochvil P (1976) Adv Colloid Interf Sci 6:201CrossRefGoogle Scholar
  33. 33.
    Hu Y, Jiang XQ, Ding Y, Zhang LY et al (2003) Biomaterials 24(13):2395CrossRefGoogle Scholar
  34. 34.
    Izumikawa S, Yoshioka S, Aso Y, TakedaY (1991) J Control Rel 15:133CrossRefGoogle Scholar
  35. 35.
    Allen C, Maysinger D, Eisenberg A (1999) Colloid Surf B Biointerfaces 16:3CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Yan Zhang
    • 1
    • 2
  • Changchun Wang
    • 1
  • Wuli Yang
    • 1
  • Bin Shi
    • 3
  • Shoukuan Fu
    • 1
  1. 1.Department of macromolecular Science of Fudan University and the Key Laboratory of Molecular Engineering of PolymersMinistry of EducationShanghaiChina
  2. 2.Modern Experiment Technology CenterAnhui UniversityHefeiChina
  3. 3.School of Pharmacy of Fudan UniversityShanghaiChina

Personalised recommendations