Colloid and Polymer Science

, Volume 283, Issue 1, pp 107–110 | Cite as

Scaling of the segmental relaxation times of polymers and its relation to the thermal expansivity

Short Communication

Abstract

Segmental relaxation times of polymers measured at various temperatures and pressures can be superposed as a function of temperature, using a shift factor equal to the specific volume raised to a power. The material-specific scaling exponent can be linked to the nature of the intermolecular repulsive potential for the material. We show the relationship of this scaling exponent to the thermal expansivity of the material, and how it can be used to sort out the different contributions to the temperature dependence of the local dynamics.

Keywords

Segmental relaxation Thermal expansivity Glass transition Fragility Intermolecular potential 

Notes

Acknowledgement

This work was supported by the Office of Naval Research.

References

  1. 1.
    Paluch M, Casalini R, Patkowski A, Pakula T, Roland CM (2003) Phys Rev E 68:031802CrossRefGoogle Scholar
  2. 2.
    Paluch M,Casalini R,Roland CM (2002) Phys Rev B 66:092202CrossRefGoogle Scholar
  3. 3.
    Casalini R, Roland CM (2003) J Chem Phys 119:11951–11956CrossRefGoogle Scholar
  4. 4.
    Roland CM, Casalini R, Santangelo P, Sekula M, Ziolo J, Paluch M (2003) Macromolecules 36:4954–4959CrossRefGoogle Scholar
  5. 5.
    Casalini R, Roland CM (2004) Phys Rev E 69:062501CrossRefGoogle Scholar
  6. 6.
    Shell MS, Debenedetti PG, La Nave E, Sciortino F (2003) J Chem Phys 118:8821–8830CrossRefGoogle Scholar
  7. 7.
    Weeks JD, Chandler D, Andersen HC (1971) J Chem Phys 54:5237–5247CrossRefGoogle Scholar
  8. 8.
    Widom B (1967) Science 157:375Google Scholar
  9. 9.
    Longuet-Higgins,HC, Widom B (1964) Mol Phys 8:549Google Scholar
  10. 10.
    Roland CM, Paluch M, Pakula T, Casalini R (2004) Philos Mag B 84:1573–1581CrossRefGoogle Scholar
  11. 11.
    Williams G (1964) Trans Faraday Soc 60:1548CrossRefGoogle Scholar
  12. 12.
    Williams G (1965) Trans Faraday Soc 61:1564CrossRefGoogle Scholar
  13. 13.
    Williams G (1997) In: Runt JP, Fitzgerald JJ (eds) Dielectric spectroscopy of polymeric materials. American Chemical Society, Washington, DCGoogle Scholar
  14. 14.
    Angell CA (1991) J Non-Cryst Solids 131:13–31Google Scholar
  15. 15.
    Angell CA (1995) Science 267:1924–1935Google Scholar
  16. 16.
    Bohmer R, Ngai KL, Angell CA, Plazek DJ (1993) J Chem Phys 99:4201–4209CrossRefGoogle Scholar
  17. 17.
    Plazek DJ, Ngai KL (1991) Macromolecules 24:1222–1224Google Scholar
  18. 18.
    Roland CM, Ngai KL (1991) Macromolecules 24:5315–5319Google Scholar
  19. 19.
    Roland CM, Ngai KL (1996) J Chem Phys 104:2967–2970CrossRefGoogle Scholar
  20. 20.
    Hodge IM (1987) Macromolecules 20:2897–2908Google Scholar
  21. 21.
    Hodge IM (1996) Non-Cryst Solids 202:203Google Scholar
  22. 22.
    Roland CM, Ngai KL (1997) J Non-Cryst Solids 212:74–76Google Scholar
  23. 23.
    Angell CA (1997) Polymer 38:6261–6266CrossRefGoogle Scholar
  24. 24.
    Angell CA (2000) J Physics-Condens Matter 12:6463–6475Google Scholar
  25. 25.
    Ngai KL, Roland CM (1993) Macromolecules 26:6824–6830Google Scholar
  26. 26.
    Huang DH, Colucci DM, McKenna GB (2002) J Chem Phys 116:3925–3934CrossRefGoogle Scholar
  27. 27.
    Roland CM, Paluch M, Rzoska SJ (2003) J Chem Phys 119:12439–12441CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Chemistry DepartmentGeorge Mason UniversityFairfaxUSA
  2. 2.Chemistry Division, Code 6120Naval Research LaboratoryWashingtonUSA

Personalised recommendations