Colloid and Polymer Science

, Volume 282, Issue 8, pp 854–866 | Cite as

The use of synchrotron X-ray scattering coupled with in situ mechanical testing for studying deformation and structural change in isotactic polypropylene

  • R. J. Davies
  • N. E. Zafeiropoulos
  • K. Schneider
  • S. V. Roth
  • M. Burghammer
  • C. Riekel
  • J. C. Kotek
  • M. Stamm
Original Contribution


The mechanical behaviour of semi-crystalline polymers is greatly influenced by the properties of the crystalline and the amorphous phases. As a result this topic has been the subject of extensive research. However, to date, a comprehensive relationship between the structure and mechanical properties for semi-crystalline polymers has yet to be established. This present study concerns the commissioning of a novel method for in situ data collection during the deformation of polymers. This involves the combination of three different techniques into a single experiment, namely tensile testing, synchrotron radiation wide angle X-ray scattering, and optical microscopy. For this current investigation, three isotactic polypropylene samples have been studied, produced using different thermal treatments. This enables the influence of thermal treatment on the mechanical properties and crystallographic structure to be assessed. The results indicate that tensile properties are influenced by thermal treatment via the relative fraction of β-phase material in the sample. As the temperature increases at which thermal treatment takes place, iPP ductility decreases due to the greater rigidity of the increasing α-phase content. Differences in crystal strain between the different iPP crystal phases are also observed although the reasons for such differences remain unclear.


Polypropylene βiPP Synchrotron WAXS Deformation 



The authors would like to thank the ESRF for beamtime. This project was undertaken as part of a long-term proposal (SC-1099). We would also like to thank Dr Y.-F. Men and Mr M. Amici for assisting with the experiments, and Ms L. Häuβler for preparing the samples at the DSC.


  1. 1.
    Ščudla J, Raab M, Eichhorn K-J, Strachota A (2003) Formation and transformation of hierarchical structure of β-nucleated polypropylene characterized by X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. Polymer 44:4655CrossRefGoogle Scholar
  2. 2.
    Lotz B, Wittmann JC, Lovinger AJ (1996) Structure and morphology of poly(propylenes): a molecular analysis. Polymer 37:4979CrossRefGoogle Scholar
  3. 3.
    Naiki M, Kikkawa T, Endo Y, Nozaki K, Yamamoto T, Hara T (2000) Crystal ordering of α phase isotactic polypropylene. Polymer 42:5471CrossRefGoogle Scholar
  4. 4.
    Vleeshouwers S (1997) Simultaneous in-situ WAXS/SAXS and d.s.c. study of the recrystallization and melting behaviour of the α and β form of iPP. Polymer 38:3213CrossRefGoogle Scholar
  5. 5.
    Grein C, Plummer CJG, Kausch H-H, Germain Y, Béguelin P (2002) Influence of β nucleation on the mechanical properties of isotactic polypropylene and rubber modified isotactic polypropylene. Polymer 43:3279CrossRefGoogle Scholar
  6. 6.
    Norton DR, Keller A (1985) The spherulitic and lamellar morphology of melt-crystallized isotactic polypropylene. Polymer 26:704CrossRefGoogle Scholar
  7. 7.
    Tordjeman P, Robert C, Martin G, Gerard P (2001) The effect of α, β crystalline structure on the mechanical properties of polypropylene. Eur Phys J E 4:459CrossRefGoogle Scholar
  8. 8.
    Keith HD, Padden FJ Jr, Walter NM, Wyckoff HW (1959) Evidence for a second crystal form of polypropylene. J Appl Phys 30:1485Google Scholar
  9. 9.
    Lotz B (1998) α and β phases of isotactic polypropylene: a case of growth kinetics ‘phase reentrency’ in polymer crystallization. Polymer 39:4561CrossRefGoogle Scholar
  10. 10.
    Jacoby P, Bersted BH, Kissel WJ, Smith CE (1986) Studies on the β-crystalline form of isotactic polypropylene. J Polym Sci Polym Phys 24:461CrossRefGoogle Scholar
  11. 11.
    Kotek J, Raab M, Baldrian J, Grellmann W (2002) The effect of specific β-nucleation on morphology and mechanical behaviour of isotactic polypropylene. J Appl Polym Sci 85:1174CrossRefGoogle Scholar
  12. 12.
    Meille SV, Ferro DR, Brückner S, Lovinger AJ, Padden FJ (1994) Structure of β-isotactic polypropylene: a long-standing structural puzzle. Macromolecules 27:2615Google Scholar
  13. 13.
    Meille SV, Brückner S, Porzio W (1990) γ-Isotactic polypropylene. A structure with nonparallel chain axes. Macromolecules 23:4114Google Scholar
  14. 14.
    Kalay G, Zhong Z, Allan P, Bevis MJ (1996) The occurrence of the γ-phase in injection moulded polypropylene in relation to the processing conditions. Polymer 37:2077CrossRefGoogle Scholar
  15. 15.
    Tjong SC, Shen JS, Li RKY (1995) Impact fracture toughness of β-form polypropylene. Scr Metall Mater 33:503CrossRefGoogle Scholar
  16. 16.
    Garbarczyk J, Sterzynski T, Paukszta D (1989) Influence of additives on the structure and properties of polymers. 4. Study of phase transition in isotactic polypropylene by synchrotron radiation. Polym Commun 30:153Google Scholar
  17. 17.
    Aboulfaraj M, G’Sell C, Ulrich B, Dahoun A (1995) In situ observation of the plastic deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron microscope. Polymer 36:731CrossRefGoogle Scholar
  18. 18.
    Karger-Kocsis J, Varga J (1996) Effects of β-α transformation on the static and dynamic tensile behaviour of isotactic polypropylene. J Appl Polym Sci 62:291CrossRefGoogle Scholar
  19. 19.
    Riekel C, Karger-Kocsis J (1999) Structural investigation of the phase transformation in the plastic zone of β-phase isotactic polypropylene by synchrotron radiation microdiffraction. Polymer 40:541CrossRefGoogle Scholar
  20. 20.
    Li JX, Cheung WL (1998) On deformation mechanisms of β-polypropylene. 1. Effect of necking on β-phase PP crystals. Polymer 39:6935CrossRefGoogle Scholar
  21. 21.
    Li JX, Cheung WL, Chan CM (1999) On deformation mechanisms of β-polypropylene. 2. Changes of lamellar structure caused by tensile loading. Polymer 40:2089CrossRefGoogle Scholar
  22. 22.
    Li JX, Cheung WL, Chan CM (1999) On deformation mechanisms of β-polypropylene. 3. Lamellar structures after necking and cold drawing. Polymer 40:3641CrossRefGoogle Scholar
  23. 23.
    Cho K, Saheb DN, Yang H, Kang BI, Kim J, Lee S-S (2003) Memory effect of locally ordered α-phase in the melting and phase transformation behaviour of β-isotactic polypropylene. Polymer 44:4053CrossRefGoogle Scholar
  24. 24.
    Torre FJ, Cortázar MM, Gómez MÁ, Ellis G, Marco C (2003) Isothermal crystallisation of iPP/Vectra blends by DSC and simultaneous SAXS and WAXS measurement employing synchrotron radiation. Polymer 44:5209CrossRefGoogle Scholar
  25. 25.
    Cho K, Saheb DN, Choi J, Yang H (2002) Real time in situ X-ray diffraction studies on the melting memory effect in the crystallization of β-isotactic polypropylene. Polymer 43:1407CrossRefGoogle Scholar
  26. 26.
    Kumaraswamy G, Verma RK, Issaian AM, Wang P, Kornfield JA, Yeh F, Hsiao BS, Olley RH (2000) Shear-enhanced crystallization in isotactic polypropylene. Part 2. Analysis of the formation of the oriented ‘skin’. Polymer 41:8931Google Scholar
  27. 27.
    Nogales A, Hsiao BS, Somani RH, Srinivas S, Tsou AH, Balta-Calleja FJ, Ezquerra TA (2001) Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide- angle X-ray scattering studies. Polymer 42:5247CrossRefGoogle Scholar
  28. 28.
    Hammersley AP, Riekel C (1989) MFIT: Multiple Spectra Fitting Program. Synchrotron Radiat News 2:24Google Scholar
  29. 29.
    Hammersley AP (1997) FIT2D: an introduction and overview. ESRF Internal Rep ESRF97HA02TGoogle Scholar
  30. 30.
    Jones AT, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134CrossRefGoogle Scholar
  31. 31.
    Chen HB, Karger-Kocsis J, Wu JS, Varger J (2002) Fracture toughness of α- and β-phase polypropylene homopolymers and random- and block-copolymers. Polymer 43:6505CrossRefGoogle Scholar
  32. 32.
    Bessell TJ, Hull D, Shortall JB (1975) Effect of polymerization conditions and crystallinity on mechanical properties and fracture of spherulitic nylon-6. J Mater Sci 10:1127Google Scholar
  33. 33.
    Hull D (1999) Fractography. Cambridge University Press, CambridgeGoogle Scholar
  34. 34.
    Galeski A (2003) Strength and toughness of crystalline polymer systems. Prog Polym Sci 28:1643CrossRefGoogle Scholar
  35. 35.
    Varga J (1992) Review: supermolecular structure of isotactic polypropylene. J Mater Sci 27:2557Google Scholar
  36. 36.
    Schneider K, Zafeiropoulos NE, Häußler L, Stamm M (2004) High-throughput screening of the influence of thermal treatments of the mechanical properties of semicrystalline polymers: a case study for iPP. Macromol Rapid Commun 25:355CrossRefGoogle Scholar
  37. 37.
    Kinloch AJ, Young RJ (1983) Fracture behaviour of polymers. Elsevier Applied Science, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • R. J. Davies
    • 1
  • N. E. Zafeiropoulos
    • 2
  • K. Schneider
    • 2
  • S. V. Roth
    • 1
  • M. Burghammer
    • 1
  • C. Riekel
    • 1
  • J. C. Kotek
    • 3
  • M. Stamm
    • 2
  1. 1.European Synchrotron Radiation Facility (ESRF)GrenobleFrance
  2. 2.Institut für Polymerforschung Dresden (IPF)DresdenGermany
  3. 3.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic

Personalised recommendations