Advertisement

Colloid and Polymer Science

, Volume 282, Issue 8, pp 927–931 | Cite as

Effect of ionic impurities on the electric field alignment of diblock copolymer thin films

  • Ting Xu
  • James T. Goldbach
  • Julie Leiston-Belanger
  • Thomas P. Russell
Original Contribution

Abstract

In Forschung hast Du immer zu mir gesagt, “Schaffe etwas!”. Mein Chef, ich habe immer versucht Deinen Befehlen zu folgen. Ich widme Dir diese Veröffentlichung. Mensch, mit fünf und siebzig bist Du noch jung, schön Geburtstag!

The effect of ionic impurities on the electric field alignment of lamellar microdomains in polystyrene-block-poly(methyl methacrylate) diblock copolymer thin films was studied using transmission electron microscopy (TEM) and atomic force microscopy (AFM). At lithium ion concentrations greater than ~210 ppm, the microdomain morphology in block copolymers could be aligned in the direction of an applied electric field, regardless of the strength of interfacial interactions. Complete alignment of the copolymer microdomains, even those adjacent to the polymer/substrate interface, occurred by a pathway where the applied electric field enhanced fluctuations at the interfaces of the microdomains with a wavelength comparable to L o, the equilibrium period of the copolymer. This enhancement in the fluctuations led to a disruption of the lamellar microdomains into smaller microdomains ~L o in size, that, in time, reconnected to form microdomains oriented in the direction of the applied field.

Keywords

Diblock copolymer Thin films Lithium ions Electric field 

Notes

Acknoledgements

This work was funded by the Department of Energy Office at Basic Energy Science (DoE-FG02-GbER45612) and the NSF-MRSEC at the University of Massachusetts (DMR-0213695).

References

  1. 1.
    Park M, Harrison C, Chaikin PM, Register RA, Adamson D (1997) Science 276:1401CrossRefGoogle Scholar
  2. 2.
    Huang E, Rockford L, Russell TP, Hawker CJ (1998) Nature 395:757CrossRefGoogle Scholar
  3. 3.
    Amundson K, Helfand E, Davis DD, Quan X, Patel SS, Smith SD (1991) Macromolecules 24:6546Google Scholar
  4. 4.
    Amundson K, Helfand E, Quan X, Smith SD (1993) Macromolecules 26:2698Google Scholar
  5. 5.
    Amundson K, Helfand E, Quan XN, Hudson SD, Smith SD (1994) Macromolecules 27:6559Google Scholar
  6. 6.
    Boker A, Knoll A, Elbs H, Abetz V, Muller AHE, Krausch G (2002) Macromolecules 35:1319CrossRefGoogle Scholar
  7. 7.
    Morkved TL, Lu M, Urbas AM, Ehrichs EE, Jaeger HM, Mansky P, Russell TP (1996) Science 273:931PubMedGoogle Scholar
  8. 8.
    Thurn-Albrecht T, Schotter J, Kastle CA, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black CT, Tuominen MT, Russell TP (2000) Science 290:2126CrossRefPubMedGoogle Scholar
  9. 9.
    Anastasiadis SH, Russell TP, Satija SK, Majkrzak CF (1989) Phys Rev Lett 62:1852CrossRefPubMedGoogle Scholar
  10. 10.
    Fredrickson GH (1987) Macromolecules 20:2535Google Scholar
  11. 11.
    Xu T, Hawker CJ, Russell TP (2003) (in preparation)Google Scholar
  12. 12.
    Xu T, Hawker CJ, Russell TP (2003) Macromolecules 36:6178CrossRefGoogle Scholar
  13. 13.
    Xu T, Russell TP (2003) (in preparation)Google Scholar
  14. 14.
    Tsori Y, Tournilhac F, Andelman D, Leibler L (2003) Phys Rev Lett 90:145504CrossRefPubMedGoogle Scholar
  15. 15.
    Lin ZQ, Kerle T, Baker SM, Hoagland DA, Schaffer E, Steiner U, Russell TP (2001) J Chem Phys 114:2377CrossRefGoogle Scholar
  16. 16.
    Schafer E, Thurn-Albrecht T, Russell TP, Steiner U (2001) Europhys Lett 53:518CrossRefGoogle Scholar
  17. 17.
    Mansky P, Liu Y, Huang E, Russell TP, Hawker C (1997) Science 275:1458CrossRefGoogle Scholar
  18. 18.
    Hawker CJ (1996) Macromolecules 29:2686CrossRefGoogle Scholar
  19. 19.
    Kim CS, Oh SM (2000) Electrochim Acta 45:2101CrossRefGoogle Scholar
  20. 20.
    Tsori Y, Andelman D (2002) Macromolecules 35:5161CrossRefGoogle Scholar
  21. 21.
    Xu T, Zhu Y, Gido SP, Russell TP (2004) Macromolecules (accepted)Google Scholar
  22. 22.
    Schaffer E, Thurn-Albrecht T, Russell TP, Steiner U (2000) Nature 403:874CrossRefGoogle Scholar
  23. 23.
    Kyrylyuk AV, Sevink GJA, Zvelindovsky AV, Fraaije JGEM (2003) Macromol Theor Simul 12:508CrossRefGoogle Scholar
  24. 24.
    Fukuda J, Onuki A (1995) J Phys II 5:1107CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ting Xu
    • 1
  • James T. Goldbach
    • 1
  • Julie Leiston-Belanger
    • 1
  • Thomas P. Russell
    • 1
  1. 1.University of MassachusettsAmherstUSA

Personalised recommendations