Colloid and Polymer Science

, Volume 282, Issue 10, pp 1169–1173 | Cite as

Temperature dependence of second critical micelle concentration of dodecyldimethylbenzylammonium bromide in aqueous solution

  • A. González-Pérez
  • J. Czapkiewicz
  • J. M. Ruso
  • J. R. Rodríguez
Original Contribution

Abstract

The specific conductivity of dodecyldimethylbenzylammonium bromide (C12BBr) in aqueous solutions, in the temperature range of 15 to 40 °C, has been measured as a function of molality. The two breaks which were found on the conductivity against molality plots were attributed to the critical micelle concentration, cmc, and second critical micelle concentration, 2nd cmc, respectively. The ratio of the slopes, S, of the three linear fragments on the plots, S2/S1 and S3/S1, was attributed to the degree of ionization of the micelles at cmc and 2nd cmc respectively. It was shown that the values of the 2nd cmc estimated above 27 °C are only apparent due to thermal disintegration of the micelles. In the temperature range of 15 to 27 °C, the values of the 2nd cmc increase gradually and the plot of the 2nd cmc against temperature is concave. The ratio of 2nd cmc/cmc for C12BBr at 25 °C amounts to 15 and appears to be high compared to the literature values for other surfactants. For comparative purposes the cmc and 2nd cmc values were also estimated conductometrically for decyldimethylbenzylammonium bromide (C10BBr) at 25 °C. The 2nd cmc value for this surfactant is higher compared to the value for the C12 homologue by a factor of 2.6.The standard Gibbs free energies of micellization at cmc and at the 2nd cmc were estimated from the experimental data for both surfactants at 25 °C.

Keywords

Decyl- and dodecyldimethylbenzylammonium bromide Second critical micelle concentration Conductivity Temperature dependence 

References

  1. 1.
    McBain JW (1913) Trans Faraday Soc 9:99Google Scholar
  2. 2.
    Rosen MJ (1989) Surfactants and Interfacial Phenomena, 2nd edition, Willey Publishers, New YorkGoogle Scholar
  3. 3.
    Moroi Y (1992) Micelles: Theoretical an Applied Aspects, Plenum Press, New YorkGoogle Scholar
  4. 4.
    Evans DF, Wennerström H (1999) The Colloidal Domain: Where Physics, Chemistry, Biology and Technology meet, 2nd edition, Wiley Publishers, New YorkGoogle Scholar
  5. 5.
    Holmberg K, Jönsson B, Kronberg B, Lindman B (2002) Surfactants and polymers in aqueous solution 2nd edition, Wiley Publishers, New YorkGoogle Scholar
  6. 6.
    Mc Bain JW, Laing ME, Titley AJ (1919) J Chem Soc 151:1279Google Scholar
  7. 7.
    Hess K, Philippoff W, Kiessing H (1939) Kolloid-Z 88:1939Google Scholar
  8. 8.
    Stauff J (1939) Kolloid-Z 89:224Google Scholar
  9. 9.
    Ekwall P, Eikren H, Mandell L (1963) Acta Chem Scand 17:111Google Scholar
  10. 10.
    Ekwall P, Holmberg P (1965) Acta Chem Scand 19:455Google Scholar
  11. 11.
    Ekwall P, Lemström KE, Eikrem H, Holmbreg P (1967) Acta Chem Scand 21:1401Google Scholar
  12. 12.
    Miura M, Kodama M (1972) Bull Chem Soc Jpn 45:428Google Scholar
  13. 13.
    Kodama M, Miura M (1972) Bull Chem Soc Jpn 45:2265Google Scholar
  14. 14.
    Kodama M, Kubota Y, Miura M (1972) Bull Chem Soc Jpn 45:2953Google Scholar
  15. 15.
    Sata N, Tyuzyo K (1953) Bull Chem Soc Jpn 26:177Google Scholar
  16. 16.
    Okuyama H, Tyuzyo K (1954) Bull Chem Soc Jpn 27:259Google Scholar
  17. 17.
    De Lisi R, Fisicaro E, Milioto S (1988) J Sol Chem 17:398Google Scholar
  18. 18.
    González-Pérez A, Czapkiewicz J, Prieto G, Rodríguez JR (2003) Colloid Polym Sci 281:1191CrossRefGoogle Scholar
  19. 19.
    Treiner C, Makayssi JE (1992) Langmuir 8:794Google Scholar
  20. 20.
    González-Pérez A, Czapkiewicz, Del Castillo JL, Rodríguez JR (2001) Colloids Surf A 193:129Google Scholar
  21. 21.
    Zhao J, Fung BM (1993) Langmuir 9:1228Google Scholar
  22. 22.
    Lee YS, Woo KW (1995) J Colloid Interface Sci 169:34CrossRefGoogle Scholar
  23. 23.
    La Mesa C (1990) J Phys Chem 94:323Google Scholar
  24. 24.
    Muller N (1993) Langmuir 9:96Google Scholar
  25. 25.
    Chen LJ, Lin SY, Huang CC (1998) J Phys Chem B 102:4350CrossRefGoogle Scholar
  26. 26.
    Rodríguez JR, González-Pérez A, Del Castillo JL, Czapkiewicz J (2002) J Colloid Interface Sci 250:438CrossRefGoogle Scholar
  27. 27.
    Zielinski R, Ikeda S, Nomura H, Kato S (1989) J Colloid Interface Sci 129:175Google Scholar
  28. 28.
    González-Pérez A, Del Castillo JL, Czapkiewicz J, Rodríguez JR (2002) Colloid Polym Sci 280:503CrossRefGoogle Scholar
  29. 29.
    Monk CB (1961) Electrolytic dissociation. Academic, LondonGoogle Scholar
  30. 30.
    Hoffmann H, Ulbright W (1977) Z Phys Chem NF 106:167Google Scholar
  31. 31.
    González-Pérez A, Czapkiewicz J, Del Castillo JL, Rodríguez JR (2003) Colloid Polym Sci 280:503Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • A. González-Pérez
    • 1
  • J. Czapkiewicz
    • 2
  • J. M. Ruso
    • 3
  • J. R. Rodríguez
    • 1
  1. 1.Grupo de Ciencia y Tecnología de Coloides, Departamento de Física de la Materia Condensada, Facultad de FísicaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Faculty of ChemistryJagiellonian UniversityKrakówPoland
  3. 3.Grupo de Biofísica e Interfases, Departamento de Física Aplicada, Facultad de FísicaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations