Colloid and Polymer Science

, Volume 282, Issue 10, pp 1133–1139 | Cite as

Apparent molar quantities of sodium octanoate in aqueous solutions

  • Alfredo González-Pérez
  • Juan M. Ruso
  • Gerardo Prieto
  • Félix SarmientoEmail author
Original Contribution


Densities and sound velocities of aqueous solutions of sodium octanoate were determined in a range of molalities between 0.0352 and 0.8105 mol kg−1 at 25, 30, 35, 40 and 45 °C. The isotherms of molality dependence of both density and sound velocity were used to determine the cmcs. Apparent molar volumes and compressibilities were determined from measurements of ultrasound velocity and density. The values of apparent molar volumes and compressibilities at infinite dilution and the apparent molar quantities in the micellar range were obtained and studied as a function of temperature. Values of the critical micelle concentration and the apparent molar quantities in the premicellar and postmicellar range are discussed and compared with the values of the corresponding fluorinated compound.


Sodium octanoate Apparent molar volumes Compressibilities Critical micelle concentration Sodium perfluorooctanoate 



This research was funded by the Spanish Ministry of Science and Technology, through the project MAT2002–00608 (European FEDER support included). A.G.-P. thanks the University of Santiago de Compostela for his postdoctoral grant.


  1. 1.
    Evans DF, Wennerström H (1994) The colloidal domain. Where physics, chemistry, biology and technology meet. VCH, New YorkGoogle Scholar
  2. 2.
    Moroi Y (1992) Micelles: theoretical and applied aspects. Plenum, New YorkGoogle Scholar
  3. 3.
    Desnoyers JE, De Lisi R, Perron G (1980) Pure Appl Chem 85:433Google Scholar
  4. 4.
    Garnsey R, Boe RJ, Mahoney R, Litovitz TA (1969) J Chem Phys 50:5222Google Scholar
  5. 5.
    Musbally GM, Perron G, Desnoyers JE (1974) J Colloid Interface Sci 48:631Google Scholar
  6. 6.
    Leduc PA, Fortier JL, Desnoyers JE (1974) J Phys Chem 78:1217Google Scholar
  7. 7.
    Desnoyers JE, Perron G, Roux AH (1987) In: Zana R (ed) Surfactant solutions: new methods of investigation. Surfactant science series, vol 22. Dekker, New York, pp 1–55Google Scholar
  8. 8.
    Millero FJ (1971) Chem Rev 71:147Google Scholar
  9. 9.
    Lepori L, Gianni P (2000) J Solution Chem 29:405CrossRefGoogle Scholar
  10. 10.
    Shigehara K (1966) Bull Chem Soc Jpn 39:2332Google Scholar
  11. 11.
    Vikingstad E, Skauge A, Høiland H (1979) J Colloid Interface Sci 72:59Google Scholar
  12. 12.
    Bloor DM, Gormally J, Wyn-Jones E (1984) J Chem Soc Faraday Trans I 80:1915Google Scholar
  13. 13.
    Zielinski R, Ikeda S, Nomura H, Kato S (1988) J Chem Soc Faraday Trans I 84:151Google Scholar
  14. 14.
    Kudryashov E, Kapustina T, Morrissey S, Buckin V, Dawson K (1998) J Colloid Interface Sci 203:59CrossRefGoogle Scholar
  15. 15.
    González-Pérez A, Ruso, JM, Prieto G, Sarmiento F J Surfactants Deterg (submitted)Google Scholar
  16. 16.
    Zielinski R, Ikeda S, Nomura H, Kato S (1987) J Colloid Interface Sci 119:398Google Scholar
  17. 17.
    Gonzalez-Pérez A, Prieto G, Ruso JM, Sarmiento F (2003) Mol Phys 101:3185CrossRefGoogle Scholar
  18. 18.
    Ekwall P, Eikrem H, Mandell L (1963) Acta Chem Scand 17:111Google Scholar
  19. 19.
    Ekwall P, Holmberg P (1965) Acta Chem Scand 19:455Google Scholar
  20. 20.
    Ekwall P, Holmberg P (1965) Acta Chem Scand 19:573Google Scholar
  21. 21.
    Ekwall P, Lemstrom KE, Eikrem H, Holmberg P (1967) Acta Chem Scand 21:1401Google Scholar
  22. 22.
    Ekwall P, Eikrem H, Stenius P (1967) Acta Chem Scand 21:1639Google Scholar
  23. 23.
    Stenius P, Ekwall P (1967) Acta Chem Scand 21:1643Google Scholar
  24. 24.
    Ekwall P, Stenius P (1967) Acta Chem Scand 21:1767Google Scholar
  25. 25.
    D’Angelo M, Onori G, Santucci A (1994) Colloid Polym Sci 97:154Google Scholar
  26. 26.
    Franks F, Quickenden MJ, Ravenhill JR, Smith HT (1968) J Phys Chem 72:2668Google Scholar
  27. 27.
    Redlich O, Rosenfeld P (1931) Z Elektrochem 37:705Google Scholar
  28. 28.
    Redlich O, Rosenfeld P (1931) Z Phys Chem 155:65Google Scholar
  29. 29.
    Brun TS, Høiland H, Vikingstad E (1978) J Colloid Interface Sci 63:89Google Scholar
  30. 30.
    Musbally GM, Perron G, Desnoyers JE (1974) J Colloid Interface Sci 48:494Google Scholar
  31. 31.
    Sakurai M, Komatsu T, Nakagawa T (1975) Bull Chem Soc Jpn 48:3491Google Scholar
  32. 32.
    Leduc PA, Desnoyers JE (1973) Can J Chem 51:2993Google Scholar
  33. 33.
    Helper LG (1969) Can J Chem 47:4613Google Scholar
  34. 34.
    Shinoda K, Hutchinson E (1962) J Phys Chem 66:577Google Scholar
  35. 35.
    Del Castillo JL, Czapkiewic J, González-Pérez A, Rodríguez JR (2000) Colloids Surf A 166:161Google Scholar
  36. 36.
    Bradley DJ, Pitzer KS (1979) J Phys Chem 83:1599Google Scholar
  37. 37.
    Cabani S, Conti G, Matteoli E (1978) J Solution Chem 8:11Google Scholar
  38. 38.
    Tamaki K, Watanabe S, Daikyoji Y (1990) Bull Chem Soc Jpn 63:3681Google Scholar
  39. 39.
    Perron G, Desnoyers JE (1997) J Chem Eng Data 42:172CrossRefGoogle Scholar
  40. 40.
    De Lisi R, Inglese A, Milioto S, Pellerito, A (1997) Langmuir 13:192CrossRefGoogle Scholar
  41. 41.
    De Lisi R, Milioto S, De Giacomo A, Inglese A (1999) Langmuir 15:5014CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Alfredo González-Pérez
    • 1
  • Juan M. Ruso
    • 1
  • Gerardo Prieto
    • 1
  • Félix Sarmiento
    • 1
    Email author
  1. 1.Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of PhysicsUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations