Colloid and Polymer Science

, Volume 281, Issue 7, pp 652–664 | Cite as

Model studies of colloidal silica precipitation using biosilica extracts from Equisetum telmateia

  • Carole C. PerryEmail author
  • Tracey Keeling-Tucker


Structural materials containing silicon are produced in single celled organisms through to higher plants and animals. Hydrated amorphous silica is a colloidal mineral of infinite functionality that is formed into structures with microscopic and macroscopic form. Proteins and proteoglycans are suggested to play a critical role in the catalysis of silica polycondensation and in structure direction during the formation of these magnificent structures. This article extends knowledge on the effect of protein containing biosilica extracts from Equisetum telmateia on the kinetics of silica formation and structure regulation. Utilising potassium silicon catecholate as the source of soluble silicon, bioextracts obtained from plant silica by dissolution of the siliceous phase with aqueous HF following extensive acid digestion of the plant cell wall were found to modify the kinetic rate constants for the formation of small silicic acid oligomers under circumneutral pH conditions and to modify the solubility of silicic acid in solution. Addition of the bioextracts at ca. 1 wt% to the reaction medium reduced the sizes and range of sizes of the fundamental silica particles formed and led to the formation of crystalline polymorphs of silica under conditions of ca. neutral pH, room temperature and in the absence of multiply charged cations, conditions assumed to be relevant to the biological mineralization environment. The ability of biological organisms to regulate the formation of silica structures with prevention of crystallinity is discussed as are the implications of this study in terms of the generation of new materials with specific form and function for industrial application.


Silica Protein Kinetics Electron microscopy Biomineralization 



Dr Derek Walton of Derby University is thanked for tangential flow purification, Anthony Willis of the MRC Immunochemistry Unit, University of Oxford for the amino acid analyses and Professor Mark Weller of Southampton University for the extended X-ray diffraction studies. Crosfield Chemicals are thanked for financial support.


  1. 1.
    Voronkov MG (1993) In: Corey JY, Corey ER, Gaspar PP (eds) Silicon chemistry. Ellis Horwood Ltd, Chichester, pp 145–152Google Scholar
  2. 2.
    Iler RK (1979) The chemistry of silica. Plenum Press, New YorkGoogle Scholar
  3. 3.
    Hartmann WD (1981) In: Volcani BE, Simpson TL (eds) Silicon and siliceous structures in biological systems. Springer, Berlin Heidelberg New York, pp 453–493Google Scholar
  4. 4.
    Garrone R, Simpson TL, Pottu-Boumendil J (1981) In: Volcani BE, Simpson TL (eds) Silicon and siliceous structures in biological systems. Springer, Berlin Heidelberg New York, pp 495–525Google Scholar
  5. 5.
    Sangster AG, Parry DW (1981) In: Volcani BE, Simpson TL (eds) Silicon and siliceous structures in biological systems. Springer, Berlin Heidelberg New York, pp 383–407Google Scholar
  6. 6.
    Mann S, Perry CC, Williams RJP, Fyfe CA, Gobbi GC, Kennedy GJ (1983) Chem Soc Chem Commun 168Google Scholar
  7. 7.
    Volcani BE (1978) In: Bendz G, Lindqvist I (eds) Biochemistry of silicon and related problems. Plenum Press, New York, pp 177–204Google Scholar
  8. 8.
    Wetherbee R, Crawford S, Mulvaney P (2000) In: Bauerlein E (ed) Biomineralization from biology to biotechnology and medical application. Wiley-VCH, pp 189–206Google Scholar
  9. 9.
    Perry CC, Keeling-Tucker T (2000) J Biol Inorg Chem 5:537CrossRefPubMedGoogle Scholar
  10. 10.
    Frondel C (1962) The system of mineralogy of DANA, 7th edn, vol3. Wiley, New YorkGoogle Scholar
  11. 11.
    Vrieling EG, Beelen TPM, van Santen RA, Gieskes WWC (1999) J Biotechnol 70:39Google Scholar
  12. 12.
    Monje PV, Baran EJ (2000) J Plant Physiol 157:457Google Scholar
  13. 13.
    Perry CC (1989) In: Mann S, Webb J, Williams RJP (eds) Biomineralisation, chemical and biological perspectives. VCH, New York, pp 223–256Google Scholar
  14. 14.
    Mann S, Perry CC (1986) In: Evered D, O'Connor M (eds) Silicon biochemistry. CIBA Symposium 121, pp 40–58Google Scholar
  15. 15.
    Borowitza MA, Volcani BE (1978) J Phycol 14:10Google Scholar
  16. 16.
    Schmid AMM, Schulz D (1979) Protoplasma 100:267Google Scholar
  17. 17.
    Perry CC, Moss EJ, Williams RJP (1990) Proc R Soc London B241:47Google Scholar
  18. 18.
    Frohlich F (1989) Terra Nova 1:267Google Scholar
  19. 19.
    Sada E, Kumazawa H, Koresawa E (1990) Chem Eng J 44:133CrossRefGoogle Scholar
  20. 20.
    Bogush GH, Zukoski CF (1990) J Colloid Interface Sci 142:1Google Scholar
  21. 21.
    Lewis DW, Willock DJ, Catlow CRA, Thomas JM, Hutchings GJ (1996) Nature 382:604Google Scholar
  22. 22.
    Kresge CT, Leowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710Google Scholar
  23. 23.
    Zhou Y, Shimizu K, Cha JN, Stucky GD, Morse DE (1999) Angew Chem Int Ed 38:780CrossRefGoogle Scholar
  24. 24.
    Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Proc Natl Acad Sci USA 96:361Google Scholar
  25. 25.
    Kröger N, Deutzmann R, Sumper M (1999) Science 286:1129PubMedGoogle Scholar
  26. 26.
    Swift DM, Wheeler AP (1992) J Phycol 28:202Google Scholar
  27. 27.
    Perry CC, Keeling-Tucker T (1998) J Chem Soc Chem Commun 2587Google Scholar
  28. 28.
    Vrieling EG, Gieskes WWC, Beelen TPM (1999) J Phycol 35:548CrossRefGoogle Scholar
  29. 29.
    Kroger N, Deutzmann R, Sumper M (2001) J Biol Chem 276:26,066Google Scholar
  30. 30.
    Harrison CC (1996) Phytochemistry 41:37CrossRefPubMedGoogle Scholar
  31. 31.
    Cornish-Bowden A (1983) Meth Enzymol 91:60PubMedGoogle Scholar
  32. 32.
    Evans DF, Parr J, Coker EN (1990) Polyhedron 9:813CrossRefGoogle Scholar
  33. 33.
    Harrison CC, Loton N (1995) J Chem Soc Faraday Trans 91:4287Google Scholar
  34. 34.
    Miller JC, Miller JN (1993) In: Statistics for analytical chemistry. Ellis Horwood, Chichester, UKGoogle Scholar
  35. 35.
    Perry CC, Fraser MA (1991) Phil Trans R Soc London B334:149Google Scholar
  36. 36.
    Rosenfeld Y, Hacohen E, Grunbaum E, Tenne R, Sloan J, Hutchison JL (1998) Nature 395:336CrossRefGoogle Scholar
  37. 37.
    Marsh RE, Corey RB, Pauling L (1955) Biochim Biophys Acta 16:1Google Scholar
  38. 38.
    Lobel KD, West JK, Hench LL (1996) J Mater Sci Lett 15:648Google Scholar
  39. 39.
    Hench LL (1994) In: Cheetham AK, Brinker CJ, Mecartney ML, Sanchez C (eds) Better ceramics through chemistry VI. Materials Research Society, Pittsburgh, pp 993–1004Google Scholar
  40. 40. Scholar
  41. 41.
    Hartwig BA, Hench LL (1972) J Biomed Mater Res 6:413PubMedGoogle Scholar
  42. 42.
    West JK, Hench LL (1994) J Biomed Mater Res 28:625PubMedGoogle Scholar
  43. 43.
    Kroger N, Sumper M (2000) In: Bauerlein E (ed) Biomineralization from biology to biotechnology and medical application. Wiley-VCH, pp 151–170Google Scholar
  44. 44.
    Morse DE (1999) Trend Biotechnol 17:230CrossRefGoogle Scholar
  45. 45.
    Cha JN, Stucky GD, Morse DE, Deming TJ (2000) Nature 403:289Google Scholar
  46. 46.
    Mizutani T, Nagase H, Fujiwara N, Ogoshi H (1998) Bull Chem Soc Jpn 71:2017Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of ChemistryThe Nottingham Trent UniversityNottinghamUK

Personalised recommendations