Colloid and Polymer Science

, Volume 281, Issue 7, pp 637–651 | Cite as

Some applications of silica aerogels

Original Contribution

Abstract

Silica aerogels are very highly divided materials which are synthesised through the association of a chemical step, the so-called sol–gel chemistry, with a physical step which is a particular way of drying the wet gel, namely under supercritical conditions with respect to the liquid phase filling its porosity. This drying process preserves the texture of the dry material: in practice it strongly reduces the pore collapse. The resulting hyperporous solids that have bulk densities of the same magnitude as air develop new and very interesting physical and even chemical properties. Owing to their poor chemical reactivity, very large surface areas (of the order of 1,000 m2/g), unusual porous volumes (greater than 95%), morphologies (monoliths or powders), optical properties (transparent, opaque or translucent), and very low thermal conductivity, they find high added-value applications in the physics of high-energy particles (Cherenkov emitters), transparent and superinsulating double windows, life and space science as well.

Keywords

Silica Aerogels Synthesis Properties Applications 

References

  1. 1.
    Pajonk GM (1994) In: Attia YJ (ed) Sol–gel processing and applications. Plenum, New York, pp 201–219Google Scholar
  2. 2.
    Fricke J (ed) (1986) Aerogels. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. 3.
    Vacher R Phalippou J Pelous J, Woignier T (eds) (1989) Rev Phys Appl 24Google Scholar
  4. 4.
    Fricke J (ed) (1992) J Non-Cryst Solids 145Google Scholar
  5. 5.
    Pekala RW, Hrubesh LW (eds) (1995) J Non-Cryst Solids 186Google Scholar
  6. 6.
    Phalippou J, Vacher R (eds) (1998) J Non-Cryst Solids 225Google Scholar
  7. 7.
    Brinker CJ, Smith DM (eds) (2001) J Non-Cryst Solids 285Google Scholar
  8. 8.
    Husing N, Schubert U (1998) Angew Chem Int Ed Engl 37:23Google Scholar
  9. 9.
    Rolison DR, Dunn B (2001) J Mater Chem 11:963CrossRefGoogle Scholar
  10. 10.
    Schneider M, Baiker A (1995) Catal Rev Sci Eng 37:515Google Scholar
  11. 11.
    Pajonk GM (1991) Appl Catal 72:217CrossRefGoogle Scholar
  12. 12.
    Pajonk GM (1997) Catal Today 35:319CrossRefGoogle Scholar
  13. 13.
    Pajonk GM (1999) Catal Today 52:3CrossRefGoogle Scholar
  14. 14.
    Pajonk GM, Venkateswara Rao A (2001) In: Pandalai SG (ed) Recent research developments in non crystalline solids. Transworld Research Network, India pp 1–21Google Scholar
  15. 15.
    McPherson DM, Pye LD, Frechette VD, Mortsea M (1989) Glastech Ber 62:208Google Scholar
  16. 16.
    Livage J, Sanchez C (1992) J Non-Cryst Solids 145:11Google Scholar
  17. 17.
    Sanchez C, Livage J (1990) New J Chem 14:513Google Scholar
  18. 18.
    Brinker CJ, Drotning WD, Scherer GW (1984) Mater Res Soc Symp Proc 32:25Google Scholar
  19. 19.
    Brinker CJ, Scherer G W (1990) Sol–gel science. The physics and chemistry of sol–gel processing. Academic, New YorkGoogle Scholar
  20. 20.
    Tillotson TM, Hrubesh LW, Thomas IM (1988) Mater Res Soc Symp Proc 121:685Google Scholar
  21. 21.
    Tillotson TM, Hrubesh LW (1992) J Non-Cryst Solids 145:44Google Scholar
  22. 22.
    Pajonk GM, Elaloui E, Achard A, Chevalier B, Chevalier J L, Durant M (1995) J Non-Cryst Solids 186:1Google Scholar
  23. 23.
    Nicolaon GA, Teichner SJ (1968) Bull Soc Chim Fr 5:1906Google Scholar
  24. 24.
    Terwari PH, Hunt AJ, Lofftus KD (1985) Mater Lett 3:363Google Scholar
  25. 25.
    Cantin M, Casse M, Koch L, Jouan R, Mestrau P, Roussel D, Bonnin F, Moutel J, Teichner SJ (1974) Nucl Instrum Methods 118:177CrossRefGoogle Scholar
  26. 26.
    Sumiyoshi T, Adachi I, Enomoto R, Iijima T, Suida R, Yokoyama M, Yokogawaa H (1998) J Non-Cryst Solids 225:369Google Scholar
  27. 27.
    Engelmann JJ, Cantin M (1978) J Phys 39:3Google Scholar
  28. 28.
    Moutel J (1977) Thesis no. 266. Universite Claude Bernard Lyon 1, FranceGoogle Scholar
  29. 29.
    Pajonk GM (1998) J Non-Cryst Solids 225:307Google Scholar
  30. 30.
    Bockhorst M, Heinloth K, Pajonk GM, Begag R, Elaloui E (1995) J Non-Cryst Solids 186:388Google Scholar
  31. 31.
    Buzykaev A, Danilyuk A, Ganzhur S, Gorodetskaya T, Kravchenko E, Onuchin A, Vorobiov A (1996) Nucl Instrum Methods Phys Res Sect A 379:65Google Scholar
  32. 32.
    Arisaka K et al. (1998) J Non-Cryst Solids 225:375Google Scholar
  33. 33.
    Platzer W, Wittwer V, Mielke M (1986) In: Fricke J (ed) Aerogels. Springer, Berlin Heidelberg New York, p 127Google Scholar
  34. 34.
    Wittwer V (1992) J Non-Cryst Solids 145:233Google Scholar
  35. 35.
    Smith DM, Maskara A, Boes U (1998) J Non-Cryst Solids 225:254Google Scholar
  36. 36.
    Svendsen S (1992) J Non-Cryst Solids 145:240Google Scholar
  37. 37.
    Jensen KI (1992) J Non-Cryst Solids 145:237Google Scholar
  38. 38.
    Venkateswara Rao A, Pajonk GM, Parvathy NN (1994) J Sol–Gel Sci Technol 3:205Google Scholar
  39. 39.
    Pajonk GM, Venkateswara Rao A, Parvathy NN, Elaloui E (1996) J Mater Sci 31:5683Google Scholar
  40. 40.
    Venkateswara Rao A, Pajonk GM, Parvathy NN (1994) J Mater Sci 29:1807Google Scholar
  41. 41.
    Haranath D, Pajonk GM, Wagh PB, Venkateswara Rao A (1997) Mater Chem Phys 49:129CrossRefGoogle Scholar
  42. 42.
    Pajonk GM, Venkateswara Rao A, Sawant BM, Parvathy NN (1997) J Non-Cryst Solids 209:40Google Scholar
  43. 43.
    Haranath D, Pajonk GM, Wagh PB, Venkateswara Rao A (1997) Microporous Mater 12:63CrossRefGoogle Scholar
  44. 44.
    Ehrburger-Dolle F, Holtz M, Mauzac C, Lahaye J, Pajonk GM (1992) J Non-Cryst Solids 145:185Google Scholar
  45. 45.
    Ehrburger-Dolle F, Dallamano J, Pajonk GM, Elaloui E (1994) Stud Surf Sci Catal 87:715Google Scholar
  46. 46.
    Ehrburger-Dolle F, Dallamano J, Elaloui E, Pajonk GM (1995) J Non-Cryst Solids 186:9Google Scholar
  47. 47.
    Venkateswara Rao A, Haranath D, Pajonk GM, Wagh PB (1998) Mater Sci Technol 14: 1194Google Scholar
  48. 48.
    Venkateswara Rao A, Pajonk GM, Haranath D (2001) Mater Sci Technol 17:343Google Scholar
  49. 49.
    Venkateswara Rao A, Pajonk GM (2001) J Non-Cryst Solids 285:202Google Scholar
  50. 50.
    Pajonk GM, Venkateswara Rao A (2001) Proceedings Silica 2001. Mulhouse, 2–6 September 2001 (in press)Google Scholar
  51. 51.
    Pajonk GM, Venkateswara Rao A, Wagh PB, Haranath D (1997) J Mater Synth Process 5:403Google Scholar
  52. 52.
    Venkateswara Rao A, Wagh PB, Pajonk GM, Haranath D (1998) Mater Sci Technol 14:236Google Scholar
  53. 53.
    Wagh PB, Pajonk GM, Haranath D, Venkateswara Rao A (1997) Mater Chem Phys 50:76CrossRefGoogle Scholar
  54. 54.
    Rigacci A, Petermann G, Gullberg L, Chevalier B, Nitz P, Valette D, Achard P, Pajonk GM, Durant M, Ryden M, Buathier S, Einarsrud MA, Nilsen E, Jensen K I, Schultz JM (2000) In: Perut M (ed) Proceedings of the 7th international symposium on supercritical fluids ISAF 1:205Google Scholar
  55. 55.
    Pajonk G M, Elaloui E, Begag R, Durant M, Chevalier B, Chevalier JL, Achard P ( ) French Patent 2,736,342, US Patent 5,795,557, EU Patent 07 52389, Canadian Patent 2,180,236Google Scholar
  56. 56.
    Begag R, Pajonk GM, Elaloui E, Chevalier B (1999) Mater Chem Phys 58:256CrossRefGoogle Scholar
  57. 57.
    Pajonk GM, Elaloui E, Chevalier B, Begag R (1997) J Non-Cryst Solids 210:224Google Scholar
  58. 58.
    Einarsrud MA, Nilsen E, Rigacci A, Pajonk GM, Buathier S, Valette D, Durant M, Chevalier B, Nitz P, Ehrburger-Dolle F (2001) J Non-Cryst Solids 285:1Google Scholar
  59. 59.
    Rigacci A, Ehrburger-Dolle F, Geissler E, Chevalier B, Sallee H, Achard P, Barbieri O, Berthon S, Bley F, Livet F, Pajonk GM, Pinto N, Rochas C (2001) J Non-Cryst Solids 285:187Google Scholar
  60. 60.
    Wagh PB, Begag R, Pajonk GM, Venkateswara Rao A, Haranath D (1999) Mater Chem Phys 57:214CrossRefGoogle Scholar
  61. 61.
    Buisson P, Hernandez C, Pierre M, Pierre AC (2001) J Non-Cryst Solids 285:295Google Scholar
  62. 62.
    Pirard R, Blacher S, Brouers F, Pirard JP (1995) J Mater Res 10:2114Google Scholar
  63. 63.
    Power M, Hosticka B, Black, E, Daitch C, Norris P (2001) J Non-Cryst Solids 285:303Google Scholar
  64. 64.
    (a) Tsou P (1995) J Non-Cryst Solids 186:415; (b) Tsou P (2000) 6th international symposium on aerogels, 8–11 October 2000, Albuquerque, NM, USAGoogle Scholar
  65. 65.
    Land VD, Harris TM, Teeters DC (2001) J Non-Cryst Solids 283:11Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Laboratoire d'Applications de la Chimie à l'Environnement UMR, Universite Claude Bernard Lyon 1-CNRS N° 5634Universite Claude Bernard Lyon 1Villeurbanne CedexFrance

Personalised recommendations