Advertisement

Things get broken: the hypoxia-inducible factor prolyl hydroxylases in ischemic heart disease

  • Timm Schreiber
  • Luca Salhöfer
  • Theresa Quinting
  • Joachim FandreyEmail author
Invited Review
  • 106 Downloads

Abstract

A major challenge in developing new treatments for myocardial infarction (MI) is an improved understanding of the pathophysiology of hypoxic tissue damage and the activation of endogenous adaptive programs to hypoxia. Due to the relevance of oxygen in metabolism, molecular adaptation to hypoxia driven by the hypoxia-inducible factors (HIFs) and the HIF-regulating prolyl hydroxylase domain enzymes (PHDs) is pivotal for the survival of cells and tissue under hypoxia. The heart under ischemic stress will extensively rely on these mechanisms of endogenous cardiac protection until hypoxia becomes too severe. In the past, work from several laboratories has provided evidence that inhibition of HIF-regulating PHDs might improve the outcome in ischemic heart disease (IHD) potentially because the adaptive mechanisms are boosted early and vigorously. Here, we review the role of the HIF hydroxylase pathway in IHD and highlight the potential of PHD inhibitors as a new treatment for MI with special regard to acute ischemia, reperfusion, and regeneration of the heart.

Keywords

Ischemia Reperfusion Regeneration HIF PHD Heart 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Adluri RS, Thirunavukkarasu M, Dunna NR, Zhan L, Oriowo B, Takeda K, Sanchez JA, Otani H, Maulik G, Fong G-H, Maulik N (2011) Disruption of hypoxia-inducible transcription factor-prolyl hydroxylase domain-1 (PHD-1/) attenuates ex vivo myocardial ischemia/reperfusion injury through hypoxia-inducible factor-1α transcription factor and its target genes in mice. Antioxid Redox Signal 15:1789–1797.  https://doi.org/10.1089/ars.2010.3769 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Appelhoff RJ, Tian Y-M, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279:38458–38465.  https://doi.org/10.1074/jbc.M406026200 CrossRefPubMedGoogle Scholar
  3. 3.
    Bao W, Qin P, Needle S, Erickson-Miller CL, Duffy KJ, Ariazi JL, Zhao S, Olzinski AR, Behm DJ, Pipes GCT, Jucker BM, Hu E, Lepore JJ, Willette RN (2010) Chronic inhibition of hypoxia-inducible factor prolyl 4-hydroxylase improves ventricular performance, remodeling, and vascularity after myocardial infarction in the rat. J Cardiovasc Pharmacol 56:147–155.  https://doi.org/10.1097/FJC.0b013e3181e2bfef CrossRefPubMedGoogle Scholar
  4. 4.
    Bekeredjian R, Walton CB, MacCannell KA, Ecker J, Kruse F, Outten JT, Sutcliffe D, Gerard RD, Bruick RK, Shohet RV (2010) Conditional HIF-1alpha expression produces a reversible cardiomyopathy. PLoS ONE 5:e11693.  https://doi.org/10.1371/journal.pone.0011693 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102.  https://doi.org/10.1126/science.1164680 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, dos Remedios C, Malm T, Andrä M, Jashari R, Nyengaard JR, Possnert G, Jovinge S, Druid H, Frisén J (2015) Dynamics of cell generation and turnover in the human heart. Cell 161:1566–1575.  https://doi.org/10.1016/j.cell.2015.05.026 CrossRefPubMedGoogle Scholar
  7. 7.
    Berra E, Benizri E, Ginouvès A, Volmat V, Roux D, Pouysségur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 22:4082–4090.  https://doi.org/10.1093/emboj/cdg392 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bolli R, Becker L, Gross G, Mentzer R, Balshaw D, Lathrop DA, NHLBI Working Group on the Translation of Therapies for Protecting the Heart from Ischemia (2004) Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 95:125–134.  https://doi.org/10.1161/01.res.0000137171.97172.d7 CrossRefPubMedGoogle Scholar
  9. 9.
    Brahimi-Horn C, Mazure N, Pouysségur J (2005) Signalling via the hypoxia-inducible factor-1alpha requires multiple posttranslational modifications. Cell Signal 17:1–9.  https://doi.org/10.1016/j.cellsig.2004.04.010 CrossRefPubMedGoogle Scholar
  10. 10.
    Cadenas S (2018) ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 117:76–89.  https://doi.org/10.1016/j.freeradbiomed.2018.01.024 CrossRefPubMedGoogle Scholar
  11. 11.
    Cai Z, Luo W, Zhan H, Semenza GL (2013) Hypoxia-inducible factor 1 is required for remote ischemic preconditioning of the heart. PNAS 110:17462–17467.  https://doi.org/10.1073/pnas.1317158110 CrossRefPubMedGoogle Scholar
  12. 12.
    Cai Z, Manalo DJ, Wei G, Rodriguez ER, Fox-Talbot K, Lu H, Zweier JL, Semenza GL (2003) Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 108:79–85.  https://doi.org/10.1161/01.CIR.0000078635.89229.8A CrossRefPubMedGoogle Scholar
  13. 13.
    Cai Z, Zhong H, Bosch-Marce M, Fox-Talbot K, Wang L, Wei C, Trush MA, Semenza GL (2008) Complete loss of ischaemic preconditioning-induced cardioprotection in mice with partial deficiency of HIF-1 alpha. Cardiovasc Res 77:463–470.  https://doi.org/10.1093/cvr/cvm035 CrossRefPubMedGoogle Scholar
  14. 14.
    Cheng RK, Asai T, Tang H, Dashoush NH, Kara RJ, Costa KD, Naka Y, Wu EX, Wolgemuth DJ, Chaudhry HW (2007) Cyclin A2 induces cardiac regeneration after myocardial infarction and prevents heart failure. Circ Res 100:1741–1748.  https://doi.org/10.1161/CIRCRESAHA.107.153544 CrossRefPubMedGoogle Scholar
  15. 15.
    Chua YL, Dufour E, Dassa EP, Rustin P, Jacobs HT, Taylor CT, Hagen T (2010) Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J Biol Chem 285:31277–31284.  https://doi.org/10.1074/jbc.M110.158485 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cioffi CL, Liu XQ, Kosinski PA, Garay M, Bowen BR (2003) Differential regulation of HIF-1 alpha prolyl-4-hydroxylase genes by hypoxia in human cardiovascular cells. Biochem Biophysic Res Com 303:947–953CrossRefGoogle Scholar
  17. 17.
    Dendorfer A, Heidbreder M, Hellwig-Bürgel T, Jöhren O, Qadri F, Dominiak P (2005) Deferoxamine induces prolonged cardiac preconditioning via accumulation of oxygen radicals. Free Radic Biol Med 38:117–124.  https://doi.org/10.1016/j.freeradbiomed.2004.10.015 CrossRefPubMedGoogle Scholar
  18. 18.
    Eckle T, Kohler D, Lehmann R, El Kasmi KC, Eltzschig HK (2008) Hypoxia-inducible factor-1 is central to cardioprotection: a New paradigm for ischemic preconditioning. Circulation 118:166–175.  https://doi.org/10.1161/CIRCULATIONAHA.107.758516 CrossRefPubMedGoogle Scholar
  19. 19.
    Eisner M (2004) The essential neruda selected poems. City Lights Books, San FranciscoGoogle Scholar
  20. 20.
    Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M (2012) Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492:376–381.  https://doi.org/10.1038/nature11739 CrossRefPubMedGoogle Scholar
  21. 21.
    Fandrey J, Gorr TA, Gassmann M (2006) Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res 71:642–651.  https://doi.org/10.1016/j.cardiores.2006.05.005 CrossRefPubMedGoogle Scholar
  22. 22.
    Fang XY, Spieler D, Albargouni L, Ronel J, Ladwig KH (2018) Impact of generalized anxiety disorder (GAD) on prehospital delay of acute myocardial infarction patients. Findings from the multicenter MEDEA study. Clin Res Cardiol 107:471–478.  https://doi.org/10.1007/s00392-018-1208-4 CrossRefPubMedGoogle Scholar
  23. 23.
    Garcia-Dorado D, Théroux P, Duran JM, Solares J, Alonso J, Sanz E, Munoz R, Elizaga J, Botas J, Fernandez-Avilés F (1992) Selective inhibition of the contractile apparatus. A new approach to modification of infarct size, infarct composition, and infarct geometry during coronary artery occlusion and reperfusion. Circulation 85:1160–1174CrossRefGoogle Scholar
  24. 24.
    Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouysségur J, Yaniv M, Mechta-Grigoriou F (2004) JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118:781–794.  https://doi.org/10.1016/j.cell.2004.08.025 CrossRefPubMedGoogle Scholar
  25. 25.
    Ghadge SK, Messner M, Van Pham T, Doppelhammer M, Petry A, Görlach A, Husse B, Franz WM, Zaruba MM (2017) Prolyl-hydroxylase inhibition induces SDF-1 associated with increased CXCR4 +/CD11b+ subpopulations and cardiac repair. J Mol Med.  https://doi.org/10.1007/s00109-017-1543-3 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gupta N, Wish JB (2017) Hypoxia-inducible factor prolyl hydroxylase inhibitors: a potential new treatment for anemia in patients With CKD. Am J Kidney Dis 69:815–826.  https://doi.org/10.1053/j.ajkd.2016.12.011 CrossRefPubMedGoogle Scholar
  27. 27.
    Haase VH (2017) Therapeutic targeting of the HIF oxygen-sensing pathway: lessons learned from clinical studies. Exp Cell Res 356:160–165.  https://doi.org/10.1016/j.yexcr.2017.05.004 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Haubner BJ, Adamowicz-Brice M, Khadayate S, Tiefenthaler V, Metzler B, Aitman T, Penninger JM (2012) Complete cardiac regeneration in a mouse model of myocardial infarction. Aging 4:966–977.  https://doi.org/10.18632/aging.100526 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W, Velik-Salchner C, Stein JI, Penninger JM (2016) Functional recovery of a human neonatal heart after severe myocardial infarction. Circ Res 118:216–221.  https://doi.org/10.1161/CIRCRESAHA.115.307017 CrossRefPubMedGoogle Scholar
  30. 30.
    Hausenloy DJ, Botker HE, Engstrom T, Erlinge D, Heusche G, Ibanez B, Kloner RA, Ovize M, Yellon DM, Garcia-Dorado D (2017) Targeting reperfusion injury in patients with ST-segment elevation myocardial infarction: trials and tribulations. Eur Heart J 38:935–941.  https://doi.org/10.1093/eurheartj/ehw145 CrossRefPubMedGoogle Scholar
  31. 31.
    Heusch G (2012) HIF-1α and paradoxical phenomena in cardioprotection. Cardiovasc Res 96:214–215.  https://doi.org/10.1093/cvr/cvs145 CrossRefPubMedGoogle Scholar
  32. 32.
    Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699.  https://doi.org/10.1161/CIRCRESAHA.116.305348 CrossRefPubMedGoogle Scholar
  33. 33.
    Heusch G (2016) Myocardial ischemia: lack of coronary blood flow or myocardial oxygen supply/demand imbalance? Circ Res 119:194–196.  https://doi.org/10.1161/CIRCRESAHA.116.308925 CrossRefPubMedGoogle Scholar
  34. 34.
    Heusch G (2017) Critical issues for the translation of cardioprotection. Circ Res 120:1477–1486.  https://doi.org/10.1161/CIRCRESAHA.117.310820 CrossRefPubMedGoogle Scholar
  35. 35.
    Heusch G, Geersh BJ (2017) The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J 38:774–784.  https://doi.org/10.1093/eurheartj/ehw224 CrossRefPubMedGoogle Scholar
  36. 36.
    Hewitson KS, McNeill LA, Riordan MV, Tian Y-M, Bullock AN, Welford RW, Elkins JM, Oldham NJ, Bhattacharya S, Gleadle JM, Ratcliffe PJ, Pugh CW, Schofield CJ (2002) Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 277:26351–26355.  https://doi.org/10.1074/jbc.C200273200 CrossRefPubMedGoogle Scholar
  37. 37.
    Hirschler B (2019) China first to approve AstraZeneca, FibroGen anaemia drug. https://www.reuters.com/article/us-astrazeneca-china-anaemia/china-first-to-approve-astrazeneca-fibrogen-anaemia-drug-idUSKBN1OH12Y. Accessed 18 Dec 2018
  38. 38.
    Hirsilä M, Koivunen P, Günzler V, Kivirikko KI, Myllyharju J (2003) Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor. J Biol Chem 278:30772–30780.  https://doi.org/10.1074/jbc.M304982200 CrossRefPubMedGoogle Scholar
  39. 39.
    Hölscher M, Silter M, Krull S, von Ahlen M, Hesse A, Schwartz P, Wielockx B, Breier G, Katschinski DM, Zieseniss A (2011) Cardiomyocyte-specific prolyl-4-hydroxylase domain 2 knock out protects from acute myocardial ischemic injury. J Biol Chem 286:11185–11194.  https://doi.org/10.1074/jbc.M110.186809 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Huang GN, Thatcher JE, McAnally J, Kong Y, Qi X, Tan W, DiMaio JM, Amatruda JF, Gerard RD, Hill JA, Bassel-Duby R, Olson EN (2012) C/EBP transcription factors mediate epicardial activation during heart development and injury. Science 338:1599–1603.  https://doi.org/10.1126/science.1229765 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Huang LE, Arany Z, Livingston DM, Bunn HF (1996) Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271:32253–32259CrossRefGoogle Scholar
  42. 42.
    Huang M, Chan DA, Jia F, Xie X, Li Z, Hoyt G, Robbins RC, Chen X, Giaccia AJ, Wu JC (2008) Short hairpin RNA interference therapy for ischemic heart disease. Circulation 118:S226–S233.  https://doi.org/10.1161/CIRCULATIONAHA.107.760785 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hubbi ME, Kshitiz Gilkes DM, Rey S, Wong CC, Luo W, Kim DH, Dang CV, Levchenko A, Semenza GL (2013) A nontranscriptional role for HIF-1α as a direct inhibitor of DNA replication. Sci Signal.  https://doi.org/10.1126/scisignal.2003417 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hyvärinen J, Hassinen IE, Sormunen R, Mäki JM, Kivirikko KI, Koivunen P, Myllyharju J (2010) Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia-reperfusion injury. J Biol Chem 285:13646–13657.  https://doi.org/10.1074/jbc.M109.084855 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ivan M, Kaelin WG Jr (2017) The EGLN-HIF O2-sensing system: multiple inputs and feedbacks. Mol Cell 66:772–779.  https://doi.org/10.1016/j.molcel.2017.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kalakech H, Tamareille S, Pons S, Godin-Ribuot D, Carmeliet P, Furber A, Martin V, Berdeaux A, Ghaleh B, Prunier F (2013) Role of hypoxia inducible factor-1α in remote limb ischemic preconditioning. J Mol Cell Cardiol 65:98–104.  https://doi.org/10.1016/j.yjmcc.2013.10.001 CrossRefPubMedGoogle Scholar
  47. 47.
    Karuppagounder SS, Kumar A, Shao DS, Zille M, Bourassa MW, Caulfield JT, Alim I, Ratan RR (2015) Metabolism and epigenetics in the nervous system: creating cellular fitness and resistance to neuronal death in neurological conditions via modulation of oxygen-, iron-, and 2-oxoglutarate-dependent dioxygenases. Brain Res 1628:273–287.  https://doi.org/10.1016/j.brainres.2015.07.030 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kerkelä R, Karsikas S, Szabo Z, Serpi R, Magga J, Gao E, Alitalo K, Anisimov A, Sormunen R, Pietilä I, Vainio L, Koch WJ, Kivirikko KI, Myllyharju J, Koivunen P (2013) Activation of hypoxia response in endothelial cells contributes to ischemic cardioprotection. Mol Cell Biol 33:3321–3329.  https://doi.org/10.1128/MCB.00432-13 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kevin LG, Camara AKS, Riess ML, Novalija E, Stowe DF (2003) Ischemic preconditioning alters real-time measure of O2 radicals in intact hearts with ischemia and reperfusion. Am J Physiol Heart Circ Physiol 284:H566–H574CrossRefGoogle Scholar
  50. 50.
    Kido M, Du L, Sullivan CC, Li X, Deutsch R, Jamieson SW, Thistlethwaite PA (2005) Hypoxia-inducible factor 1-alpha reduces infarction and attenuates progression of cardiac dysfunction after myocardial infarction in the mouse. J Am Coll Cardiol 46:2116–2124.  https://doi.org/10.1016/j.jacc.2005.08.045 CrossRefPubMedGoogle Scholar
  51. 51.
    Kim J, Wu Q, Zhang Y, Wiens KM, Huang Y, Rubin N, Shimada H, Handin RI, Chao MY, Tuan TL, Starnes VA, Lien CL (2010) PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc Natl Acad Sci 5:17206–17210.  https://doi.org/10.1073/pnas.0915016107 CrossRefGoogle Scholar
  52. 52.
    Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295:858–861.  https://doi.org/10.1126/science.1068592 CrossRefPubMedGoogle Scholar
  53. 53.
    Lee K-H, Park J-W, Chun Y-S (2004) Non-hypoxic transcriptional activation of the aryl hydrocarbon receptor nuclear translocator in concert with a novel hypoxia-inducible factor-1alpha isoform. Nucleic Acids Res 32:5499–5511.  https://doi.org/10.1093/nar/gkh880 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li F, Wang X, Capasso JM, Gerdes AM (1996) Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Call Cardiol 28:1737–1746.  https://doi.org/10.1006/jmcc.1996.0163 CrossRefGoogle Scholar
  55. 55.
    Li TS, Cheng K, Malliaras K, Matsushita N, Sun B, Marbán L, Zhang Y, Marbán E (2011) Expansion of human cardiac stem cells in physiological oxygen improves cell production efficiency and potency for myocardial repair. Cardiovasc Res 89:157–165.  https://doi.org/10.1093/cvr/cvq251 CrossRefPubMedGoogle Scholar
  56. 56.
    Lieb ME, Menzies K, Moschella MC, Ni R, Taubman MB (2002) Mammalian EGLN genes have distinct patterns of mRNA expression and regulation. Biochem Cell Biol 80:421–426CrossRefGoogle Scholar
  57. 57.
    Liu W, Shen SM, Zhao XY, Chen GQ (2012) Targeted genes and interacting proteins of hypoxia inducible factor-1. Int J Biochem Mol Biol 3:165–178PubMedPubMedCentralGoogle Scholar
  58. 58.
    Loinard C, Ginouvès A, Vilar J, Cochain C, Zouggari Y, Recalde A, Duriez M, Lévy BI, Pouysségur J, Berra E, Silvestre J-S (2009) Inhibition of prolyl hydroxylase domain proteins promotes therapeutic revascularization. Circulation 120:50–59.  https://doi.org/10.1161/CIRCULATIONAHA.108.813303 CrossRefPubMedGoogle Scholar
  59. 59.
    Maynard MA, Qi H, Chung J, Lee EHL, Kondo Y, Hara S, Conaway RC, Conaway JW, Ohh M (2003) Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem 278:11032–11040.  https://doi.org/10.1074/jbc.M208681200 CrossRefPubMedGoogle Scholar
  60. 60.
    Metzen E, Berchner-Pfannschmidt U, Stengel P, Marxsen JH, Stolze I, Klinger M, Huang WQ, Wotzlaw C, Hellwig-Bürgel T, Jelkmann W, Acker H, Fandrey J (2003) Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. J Cell Sci 116:1319–1326CrossRefGoogle Scholar
  61. 61.
    Metzen E, Stiehl DP, Doege K, Marxsen JH, Hellwig-Bürgel T, Jelkmann W (2005) Regulation of the prolyl hydroxylase domain protein 2 (phd2/egln-1) gene: identification of a functional hypoxia-responsive element. Biochem J 387:711–717.  https://doi.org/10.1042/BJ20041736 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Minamishima YA, Kaelin WG (2010) Reactivation of hepatic EPO synthesis in mice after PHD loss. Science 329:407.  https://doi.org/10.1126/science.1192811 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, Silberstein LE, Dos Remedios CG, Graham D, Colan S, Kühn B (2013) Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci 110:1446–1456.  https://doi.org/10.1073/pnas.1214608110 CrossRefPubMedGoogle Scholar
  64. 64.
    Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609.  https://doi.org/10.1152/physrev.00024.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nakada Y, Canseco DC, Thet S, Abdisalaam S, Asaithamby A, Santos CX, Shah A, Zhang H, Faber JE, Kinter MT, Szweda LI, Xing C, Deberardinis R, Oz O, Lu Z, Zhang CC, Kimura W, Sadek HA (2016) Hypoxia induces heart regeneration in adult mice. Nature 541:222–227.  https://doi.org/10.1038/nature20173 CrossRefPubMedGoogle Scholar
  66. 66.
    Nwogu JI, Geenen D, Bean M, Brenner MC, Huang X, Buttrick PM (2001) Inhibition of collagen synthesis with prolyl 4-hydroxylase inhibitor improves left ventricular function and alters the pattern of left ventricular dilatation after myocardial infarction. Circulation 104:2216–2221.  https://doi.org/10.1161/hc4301.097193 CrossRefPubMedGoogle Scholar
  67. 67.
    Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187:249–253.  https://doi.org/10.1002/jez.1401870208 CrossRefPubMedGoogle Scholar
  68. 68.
    Ockaili R, Natarajan R, Salloum F, Fisher BJ, Jones D, Fowler AA, Kukreja RC (2005) HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. Am J Physiol Heart Circ Physiol 289:H542–H548.  https://doi.org/10.1152/ajpheart.00089.2005 CrossRefPubMedGoogle Scholar
  69. 69.
    Ogura Y, Ouchi N, Ohashi K, Shibata R, Kataoka Y, Kambara T, Kito T, Maruyama S, Yuasa D, Matsuo K, Enomoto T, Uemura Y, Miyabe M, Ishii M, Yamamoto T, Shimizu Y, Walsh K, Murohara T (2012) Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation 126:1728–1738.  https://doi.org/10.1161/CIRCULATIONAHA.112.115089 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Ong S-G, Lee WH, Theodorou L, Kodo K, Lim SY, Shukla DH, Briston T, Kiriakidis S, Ashcroft M, Davidson SM, Maxwell PH, Yellon DM, Hausenloy DJ (2014) HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovasc Res 104:24–36.  https://doi.org/10.1093/cvr/cvu172 CrossRefPubMedGoogle Scholar
  71. 71.
    Pasumarthi KB, Nakajima H, Nakajima HO, Soonpaa MH, Filed LJ (2005) Targeted expression of cyclin D2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res 96:110–118.  https://doi.org/10.1161/01.RES.0000152326.91223.4F CrossRefPubMedGoogle Scholar
  72. 72.
    Pescador N, Cuevas Y, Naranjo S, Alcaide M, Villar D, Landázuri MO, Del Peso L (2005) Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem J 390:189–197.  https://doi.org/10.1042/BJ20042121 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Philipp S, Jürgensen JS, Fielitz J, Bernhardt WM, Weidemann A, Schiche A, Pilz B, Dietz R, Regitz-Zagrosek V, Eckardt KU, Willenbrock R (2006) Stabilization of hypoxia inducible factor rather than modulation of collagen metabolism improves cardiac function after acute myocardial infarction in rats. Eur J Heart Fail 8:347–354.  https://doi.org/10.1016/j.ejheart.2005.10.009 CrossRefPubMedGoogle Scholar
  74. 74.
    Piper HM, Kasseckert S, Abdallah Y (2006) The sarcoplasmic reticulum as the primary target of reperfusion protection. Cardiovasc Res 70:170–173.  https://doi.org/10.1016/j.cardiores.2006.03.010 CrossRefPubMedGoogle Scholar
  75. 75.
    Porello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080.  https://doi.org/10.1126/science.1200708 CrossRefGoogle Scholar
  76. 76.
    Porello ER (2013) microRNAs in cardiac development and regeneration. Clin Sci 125:151–166.  https://doi.org/10.1042/CS20130011 CrossRefGoogle Scholar
  77. 77.
    Porello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA (2013) Regulation of neonatal and adult mammalian heart regeneration by miR-15 family. Proc Natl Acad Sci 110:187–192.  https://doi.org/10.1073/pnas.1208863110 CrossRefGoogle Scholar
  78. 78.
    Schley G, Klanke B, Schödel J, Kröning S, Türkoglu G, Beyer A, Hagos Y, Amann K, Burckhardt BC, Burzlaff N, Eckardt KU, Willam C (2012) Selective stabilization of HIF-1α in renal tubular cells by 2-oxoglutarate analogues. Am J Pathol 181:1595–1606.  https://doi.org/10.1016/j.ajpath.2012.07.010 CrossRefPubMedGoogle Scholar
  79. 79.
    Schödel J, Bohr D, Klanke B, Schley G, Schlötzer-Schrehardt U, Warnecke C, Kurtz A, Amann K, Eckardt KU, Willam C (2010) Factor inhibiting HIF limits the expression of hypoxia-inducible genes in podocytes and distal tubular cells. Kidney Int 78:857–867.  https://doi.org/10.1038/ki.2010.284 CrossRefPubMedGoogle Scholar
  80. 80.
    Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu T-D, Guerquin-Kern J-L, Lechene CP, Lee RT (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493:433–436.  https://doi.org/10.1038/nature11682 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Steinhoff A, Pientka FK, Möckel S, Kettelhake A, Hartmann E, Köhler M, Depping R (2009) Cellular oxygen sensing: importins and exportins are mediators of intracellular localisation of prolyl-4-hydroxylases PHD1 and PHD2. Biochem Biophysic Res Com 387:705–711.  https://doi.org/10.1016/j.bbrc.2009.07.090 CrossRefGoogle Scholar
  82. 82.
    Stolze IP, Tian YM, Appelhoff RJ, Turley H, Wykoff CC, Gleadle JM, Ratcliff PJ (2004) Genetic analysis of the role of the asparaginyl hydroxylase factor inhibiting hypoxia-inducible factor (FIH) in regulating hypoxia-inducible factor (HIF) transcriptional target genes. J Biol Chem 427:42719–42725.  https://doi.org/10.1074/jbc.M406713200 CrossRefGoogle Scholar
  83. 83.
    Stubbs CJ, Loenarz C, Mecinović J, Yeoh KK, Hindley N, Liénard BM, Sobott F, Schofield CJ, Flashman E (2009) Application of a proteolysis/mass spectrometry method for investigating the effects of inhibitors on hydroxylase structure. J Med Chem 52:2799–2805.  https://doi.org/10.1021/jm900285r CrossRefPubMedGoogle Scholar
  84. 84.
    Takeda K, Ho VC, Takeda H, Duan L-J, Nagy A, Fong G-H (2006) Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol Cell Biol 26:8336–8346.  https://doi.org/10.1128/MCB.00425-06 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Tan SC, Gomes RSM, Yeoh KK, Perbellini F, Malandraki-Miller S, Ambrose L, Heather LC, Faggian G, Schofield CJ, Davies KE, Clarke K, Carr CA (2016) Preconditioning of cardiosphere-derived cells with hypoxia or prolyl-4-hydroxylase inhibitors increases stemness and decreases reliance on oxidative metabolism. Cell Transplant 25:35–53.  https://doi.org/10.3727/096368915X687697 CrossRefPubMedGoogle Scholar
  86. 86.
    Tian YM, Mole DR, Ratcliffe PJ, Gleadle JM (2006) Characterization of different isoforms of the HIF prolyl hydroxylase PHD1 generated by alternative initiation. Biochem J 397:179–186.  https://doi.org/10.1042/BJ20051996 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA-K, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist P-H, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419.  https://doi.org/10.1126/science.1260419 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Villa JC, Chiu D, Brandes AH, Escorcia FE, Villa CH, Maquire WF, Hu CJ, de Stanchina E, Simon MC, Sisodia SS, Scheinberg DA, Li YM (2014) Nontranscriptional role of Hif-1α in activation of γ-secretase and notch signaling in breast cancer. Cell Rep 8:1077–1092.  https://doi.org/10.1016/j.celrep.2014.07.028 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Vogler M, Zieseniss A, Hesse AR, Levent E, Tiburcy M, Heinze E, Burzlaff N, Schley G, Eckardt KU, Willam C, Katschinski DM (2015) Pre- and post-conditional inhibition of prolyl-4-hydroxylase domain enzymes protects the heart from an ischemic insult. Pflugers Arch 467:2141–2149.  https://doi.org/10.1007/s00424-014-1667-z CrossRefPubMedGoogle Scholar
  90. 90.
    Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, Carter A, Casey DC, Charlson FJ, Chen AZ, Coggeshall M, Cornaby L, Dandona L, Dicker DJ, Dilegge T, Erskine HE, Ferrari AJ, Fitzmaurice C, Fleming T, Forouzanfar MH, Fullman N, Gething PW, Goldberg EM, Graetz N, Haagsma JA, Johnson CO, Kassebaum NJ, Kawashima T, Kemmer L, Khalil IA, Kinfu Y, Kyu HH, Leung J, Liang X, Lim SS, Lopez AD, Lozano R, Marczak L, Mensah GA, Mokdad AH, Naghavi M, Nguyen G, Nsoesie E, Olsen H, Pigott DM, Pinho C, Rankin Z, Reinig N, Salomon JA, Sandar L, Smith A, Stanaway J, Steiner C, Teeple S, Thomas BA, Troeger C, Wagner JA, Wang H, Wanga V, Whiteford HA, Zoeckler L, Abajobir AA, Abate KH, Abbafati C, Abbas KM, Abd-Allah F, Abraham B, Abubakar I, Abu-Raddad LJ, Abu-Rmeileh NME, Ackerman IN, Adebiyi AO, Ademi Z, Adou AK, Afanvi KA, Agardh EE, Agarwal A, Kiadaliri AA, Ahmadieh H, Ajala ON, Akinyemi RO, Akseer N, Al-Aly Z, Alam K, Alam NKM, Aldhahri SF, Alegretti MA, Alemu ZA, Alexander LT, Alhabib S, Ali R, Alkerwi A, Alla F, Allebeck P, Al-Raddadi R, Alsharif U, Altirkawi KA, Alvis-Guzman N, Amare AT, Amberbir A, Amini H, Ammar W, Amrock SM, Andersen HH, Anderson GM, Anderson BO, Antonio CAT, Aregay AF, Ärnlöv J, Al Artaman, Asayesh H, Assadi R, Atique S, Avokpaho EFGA, Awasthi A, Quintanilla BPA, Azzopardi P, Bacha U, Badawi A, Balakrishnan K, Banerjee A, Barac A, Barker-Collo SL, Bärnighausen T, Barregard L, Barrero LH, Basu A, Bazargan-Hejazi S, Bell B, Bell ML, Bennett DA, Bensenor IM, Benzian H, Berhane A, Bernabé E, Betsu BD, Beyene AS, Bhala N, Bhatt S, Biadgilign S, Bienhoff K, Bikbov B, Biryukov S, Bisanzio D, Bjertness E, Blore J, Borschmann R, Boufous S, Brainin M, Brazinova A, Breitborde NJK, Brown J, Buchbinder R, Buckle GC, Butt ZA, Calabria B, Campos-Nonato IR, Campuzano JC, Carabin H, Cárdenas R, Carpenter DO, Carrero JJ, Castañeda-Orjuela CA, Rivas JC, Catalá-López F, Chang J-C, Chiang PPC, Chibueze CE, Chisumpa VH, Choi JYJ, Chowdhury R, Christensen H, Christopher DJ, Ciobanu LG, Cirillo M, Coates MM, Colquhoun SM, Cooper C, Cortinovis M, Crump JA, Damtew SA, Dandona R, Daoud F, Dargan PI, Neves Das J, Davey G, Davis AC, De Leo D, Degenhardt L, Del Gobbo LC, Dellavalle RP, Deribe K, Deribew A, Derrett S, Jarlais Des DC, Dharmaratne SD, Dhillon PK, Diaz-Torné C, Ding EL, Driscoll TR, Duan L, Dubey M, Duncan BB, Ebrahimi H, Ellenbogen RG, Elyazar I, Endres M, Endries AY, Ermakov SP, Eshrati B, Estep K, Farid TA, Farinha CSES, Faro A, Farvid MS, Farzadfar F, Feigin VL, Felson DT, Fereshtehnejad S-M, Fernandes JG, Fernandes JC, Fischer F, Fitchett JRA, Foreman K, Fowkes FGR, Fox J, Franklin RC, Friedman J, Frostad J, Fürst T, Futran ND, Gabbe B, Ganguly P, Gankpé FG, Gebre T, Gebrehiwot TT, Gebremedhin AT, Geleijnse JM, Gessner BD, Gibney KB, Ginawi IAM, Giref AZ, Giroud M, Gishu MD, Glaser E, Godwin WW, Gomez-Dantes H, Gona P, Goodridge A, Gopalani SV, Gotay CC, Goto A, Gouda HN, Grainger R, Greaves F, Guillemin F, Guo Y, Gupta R, Gupta R, Gupta V, Gutiérrez RA, Haile D, Hailu AD, Hailu GB, Halasa YA, Hamadeh RR, Hamidi S, Hammami M, Hancock J, Handal AJ, Hankey GJ, Hao Y, Harb HL, Harikrishnan S, Haro JM, Havmoeller R, Hay RJ, Heredia-Pi IB, Heydarpour P, Hoek HW, Horino M, Horita N, Hosgood HD, Hoy DG, Htet AS, Huang H, Huang JJ, Huynh C, Iannarone M, Iburg KM, Innos K, Inoue M, Iyer VJ, Jacobsen KH, Jahanmehr N, Jakovljevic MB, Javanbakht M, Jayatilleke AU, Jee SH, Jeemon P, Jensen PN, Jiang Y, Jibat T, Jimenez-Corona A, Jin Y, Jonas JB, Kabir Z, Kalkonde Y, Kamal R, Kan H, Karch A, Karema CK, Karimkhani C, Kasaeian A, Kaul A, Kawakami N, Keiyoro PN, Kemp AH, Keren A, Kesavachandran CN, Khader YS, Khan AR, Khan EA, Khang Y-H, Khera S, Khoja TAM, Khubchandani J, Kieling C, Kim P, Kim CI, Kim D, Kim YJ, Kissoon N, Knibbs LD, Knudsen AK, Kokubo Y, Kolte D, Kopec JA, Kosen S, Kotsakis GA, Koul PA, Koyanagi A, Kravchenko M, Defo BK, Bicer BK, Kudom AA, Kuipers EJ, Kumar GA, Kutz M, Kwan GF, Lal A, Lalloo R, Lallukka T, Lam H, Lam JO, Langan SM, Larsson A, Lavados PM, Leasher JL, Leigh J, Leung R, Levi M, Li Y, Li Y, Liang J, Liu S, Liu Y, Lloyd BK, Lo WD, Logroscino G, Looker KJ, Lotufo PA, Lunevicius R, Lyons RA, Mackay MT, Magdy M, El Razek A, Mahdavi M, Majdan M, Majeed A, Malekzadeh R, Marcenes W, Margolis DJ, Martinez-Raga J, Masiye F, Massano J, McGarvey ST, McGrath JJ, McKee M, McMahon BJ, Meaney PA, Mehari A, Mejia-Rodriguez F, Mekonnen AB, Melaku YA, Memiah P, Memish ZA, Mendoza W, Meretoja A, Meretoja TJ, Mhimbira FA, Miller TR, Mills EJ, Mirarefin M, Mitchell PB, Mock CN, Mohammadi A, Mohammed S, Monasta L, Hernandez JCM, Montico M, Mooney MD, Moradi-Lakeh M, Morawska L, Mueller UO, Mullany E, Mumford JE, Murdoch ME, Nachega JB, Nagel G, Naheed A, Naldi L, Nangia V, Newton JN, Ng M, Ngalesoni FN, Le Nguyen Q, Nisar MI, Pete PMN, Nolla JM, Norheim OF, Norman RE, Norrving B, Nunes BP, Ogbo FA, Oh IH, Ohkubo T, Olivares PR, Olusanya BO, Olusanya JO, Ortiz A, Osman M, Ota E, Pa M, Park EK, Parsaeian M, de Azeredo Passos VM, Caicedo AJP, Patten SB, Patton GC, Pereira DM, Perez-Padilla R, Perico N, Pesudovs K, Petzold M, Phillips MR, Piel FB, Pillay JD, Pishgar F, Plass D, Platts-Mills JA, Polinder S, Pond CD, Popova S, Poulton RG, Pourmalek F, Prabhakaran D, Prasad NM, Qorbani M, Rabiee RHS, Radfar A, Rafay A, Rahimi K, Rahimi-Movaghar V, Rahman M, Rahman MHU, Rahman SU, Rai RK, Rajsic S, Ram U, Rao P, Refaat AH, Reitsma MB, Remuzzi G, Resnikoff S, Reynolds A, Ribeiro AL, Blancas MJR, Roba HS, Rojas-Rueda D, Ronfani L, Roshandel G, Roth GA, Rothenbacher D, Roy A, Sagar R, Sahathevan R, Sanabria JR, Sanchez-Niño MD, Santos IS, Santos JV, Sarmiento-Suarez R, Sartorius B, Satpathy M, Savic M, Sawhney M, Schaub MP, Schmidt MI, Schneider IJC, Schöttker Ben, Schwebel DC, Scott JG, Seedat S, Sepanlou SG, Servan-Mori EE, Shackelford KA, Shaheen A, Shaikh MA, Sharma R, Sharma U, Shen J, Shepard DS, Sheth KN, Shibuya K, Shin M-J, Shiri R, Shiue I, Shrime MG, Sigfusdottir ID, Silva DAS, Silveira DGA, Singh A, Singh JA, Singh OP, Singh PK, Sivonda A, Skirbekk V, Skogen JC, Sligar A, Sliwa K, Soljak M, Søreide K, Soriano JB, Sposato LA, Sreeramareddy CT, Stathopoulou V, Steel N, Stein DJ, Steiner TJ, Steinke S, Stovner L, Stroumpoulis K, Sunguya BF, Sur P, Swaminathan S, Sykes BL, Szoeke CEI, Tabarés-Seisdedos R, Takala JS, Tandon N, Tanne D, Tavakkoli M, Taye B, Taylor HR, Te Ao BJ, Tedla BA, Terkawi AS, Thomson AJ, Thorne-Lyman AL, Thrift AG, Thurston GD, Tobe-Gai R, Tonelli M, Topor-Madry R, Topouzis F, Tran BX, Dimbuene ZT, Tsilimbaris M, Tura AK, Tuzcu EM, Tyrovolas S, Ukwaja KN, Undurraga EA, Uneke CJ, Uthman OA, van Gool CH, Varakin YY, Vasankari T, Venketasubramanian N, Verma RK, Violante FS, Vladimirov SK, Vlassov VV, Vollset SE, Wagner GR, Waller SG, Wang L, Watkins DA, Weichenthal S, Weiderpass E, Weintraub RG, Werdecker A, Westerman R, White RA, Williams HC, Wiysonge CS, Wolfe CDA, Won S, Woodbrook R, Wubshet M, Xavier D, Xu G, Yadav AK, Yan LL, Yano Y, Yaseri M, Ye P, Yebyo HG, Yip P, Yonemoto N, Yoon S-J, Younis MZ, Yu C, Zaidi Z, El Sayed Zaki M, Zeeb H, Zhou M, Zodpey S, Zuhlke LJ, Murray CJL, Collaborators G2DAIIAP (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–1602.  https://doi.org/10.1016/s0140-6736(16)31678-6 CrossRefGoogle Scholar
  91. 91.
    Wang GL, Semenza GL (1993) Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood 82:3610–3615PubMedGoogle Scholar
  92. 92.
    Xi L, Taher M, Yin C, Salloum F, Kukreja RC (2004) Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1alpha and AP-1 and iNOS signaling. Am J Physiol Heart Circ Physiol 287:H2369–H2375.  https://doi.org/10.1152/ajpheart.00422.2004 CrossRefPubMedGoogle Scholar
  93. 93.
    Xie L, Pi X, Wang Z, He J, Willis MS, Patterson C (2015) Depletion of PHD3 protects heart from ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. J Mol Cell Cardiol 80:156–165.  https://doi.org/10.1016/j.yjmcc.2015.01.007 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Yasumoto K-I, Kowata Y, Yoshida A, Torii S, Sogawa K (2009) Role of the intracellular localization of HIF-prolyl hydroxylases. Biochim Biophysic 1793:792–797.  https://doi.org/10.1016/j.bbamcr.2009.01.014 CrossRefGoogle Scholar
  95. 95.
    Zhang J, Li D (2012) Effect of conjugated linoleic acid on inhibition of prolyl hydroxylase 1 in hearts of mice. Lipids Health Dis 11:22.  https://doi.org/10.1186/1476-511X-11-22 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Zhang L, Sun Z, Ren P, You M, Zhang J, Fang L, Wang J, Chen Y, Yan F, Zheng H, Xie M (2017) Localized delivery of shRNA against PHD2 protects the heart from acute myocardial infarction through ultrasound-targeted cationic microbubble destruction. Theranostics 7:51–66.  https://doi.org/10.7150/thno.16074 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Zhao H-X, Wang X-L, Wang Y-H, Wu Y, Li X-Y, Lv X-P, Zhao Z-Q, Zhao R-R, Liu H-R (2010) Attenuation of myocardial injury by postconditioning: role of hypoxia inducible factor-1alpha. Basic Res Cardiol 105:109–118.  https://doi.org/10.1007/s00395-009-0044-0 CrossRefPubMedGoogle Scholar
  98. 98.
    Zieseniss A, Hesse AR, Jatho A, Krull S, Hölscher M, Vogel S, Katschinski DM (2015) Cardiomyocyte-specific transgenic expression of prolyl-4-hydroxylase domain 3 impairs the myocardial response to ischemia. Cell Physiol Biochem 36:843–851.  https://doi.org/10.1159/000430260 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of PhysiologyUniversity of Duisburg-EssenEssenGermany

Personalised recommendations