A concise discussion of the regulatory role of cGMP kinase I in cardiac physiology and pathology

  • Franz HofmannEmail author


The underlying cause of cardiac hypertrophy, fibrosis, and heart failure has been investigated in great detail using different mouse models. These studies indicated that cGMP and cGMP-dependent protein kinase type I (cGKI) may ameliorate these negative phenotypes in the adult heart. Recently, evidence has been published that cardiac mitochondrial BKCa channels are a target for cGKI and that activation of mitoBKCa channels may cause some of the positive effects of conditioning in ischemia/reperfusion injury. It will be pointed out that most studies could not present convincing evidence that it is the cGMP level and the activity cGKI in specific cardiac cells that reduces hypertrophy or heart failure. However, anti-fibrotic compounds stimulating nitric oxide-sensitive guanylyl cyclase may be an upcoming therapy for abnormal cardiac remodeling.


NO Guanylyl cyclase cGMP cGMP-dependent protein kinase I Heart failure Cardiac hypertrophy Fibrosis PKG ANP BNP CNP 


Compliance with ethical standards

Conflict of interest

The author has no conflict of interest.


  1. 1.
    Airhart N, Yang YF, Roberts CT Jr, Silberbach M (2003) Atrial natriuretic peptide induces natriuretic peptide receptor-cGMP-dependent protein kinase interaction. J Biol Chem 278:38693–38698. PubMedCrossRefGoogle Scholar
  2. 2.
    Ammendola A, Geiselhoringer A, Hofmann F, Schlossmann J (2001) Molecular determinants of the interaction between the inositol 1,4,5-trisphosphate receptor-associated cGMP kinase substrate (IRAG) and cGMP kinase Ibeta. J Biol Chem 276:24153–24159PubMedCrossRefGoogle Scholar
  3. 3.
    Andersen MJ, Ersboll M, Axelsson A, Gustafsson F, Hassager C, Kober L, Borlaug BA, Boesgaard S, Skovgaard LT, Moller JE (2013) Sildenafil and diastolic dysfunction after acute myocardial infarction in patients with preserved ejection fraction: the Sildenafil and Diastolic Dysfunction After Acute Myocardial Infarction (SIDAMI) trial. Circulation 127:1200–1208. PubMedCrossRefGoogle Scholar
  4. 4.
    Antl M, von Bruhl ML, Eiglsperger C, Werner M, Konrad I, Kocher T, Wilm M, Hofmann F, Massberg S, Schlossmann J (2007) IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation. Blood 109:552–559PubMedCrossRefGoogle Scholar
  5. 5.
    Balligand JL, Kelly RA, Marsden PA, Smith TW, Michel T (1993) Control of cardiac muscle cell function by an endogenous nitric oxide signaling system. Proc Natl Acad Sci USA 90:347–351PubMedCrossRefGoogle Scholar
  6. 6.
    Beyer C, Zenzmaier C, Palumbo-Zerr K, Mancuso R, Distler A, Dees C, Zerr P, Huang J, Maier C, Pachowsky ML, Friebe A, Sandner P, Distler O, Schett G, Berger P, Distler JH (2015) Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGFbeta signalling. Ann Rheum Dis 74:1408–1416. PubMedCrossRefGoogle Scholar
  7. 7.
    Bibli SI, Andreadou I, Chatzianastasiou A, Tzimas C, Sanoudou D, Kranias E, Brouckaert P, Coletta C, Szabo C, Kremastinos DT, Iliodromitis EK, Papapetropoulos A (2015) Cardioprotection by H2S engages a cGMP-dependent protein kinase G/phospholamban pathway. Cardiovasc Res 106:432–442. PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Blanton RM, Takimoto E, Aronovitz M, Thoonen R, Kass DA, Karas RH, Mendelsohn ME (2013) Mutation of the protein kinase I alpha leucine zipper domain produces hypertension and progressive left ventricular hypertrophy: a novel mouse model of age-dependent hypertensive heart disease. J Gerontol A Biol Sci Med Sci 68:1351–1355. PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Blanton RM, Takimoto E, Lane AM, Aronovitz M, Piotrowski R, Karas RH, Kass DA, Mendelsohn ME (2012) Protein kinase G Ialpha inhibits pressure overload-induced cardiac remodeling and is required for the cardioprotective effect of sildenafil in vivo. J Am Heart Assoc 1:e003731. PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Blaser MC, Wei K, Adams RLE, Zhou YQ, Caruso LL, Mirzaei Z, Lam AY, Tam RKK, Zhang H, Heximer SP, Henkelman RM, Simmons CA (2018) Deficiency of natriuretic peptide receptor 2 promotes bicuspid aortic valves, aortic valve disease, left ventricular dysfunction, and ascending aortic dilatations in mice. Circ Res 122:405–416. PubMedCrossRefGoogle Scholar
  11. 11.
    Border WA, Noble NA (1994) Transforming growth factor beta in tissue fibrosis. N Engl J Med 331:1286–1292. PubMedCrossRefGoogle Scholar
  12. 12.
    Burkard N, Williams T, Czolbe M, Blomer N, Panther F, Link M, Fraccarollo D, Widder JD, Hu K, Han H, Hofmann U, Frantz S, Nordbeck P, Bulla J, Schuh K, Ritter O (2010) Conditional overexpression of neuronal nitric oxide synthase is cardioprotective in ischemia/reperfusion. Circulation 122:1588–1603. PubMedCrossRefGoogle Scholar
  13. 13.
    Burnett JC Jr, Kao PC, Hu DC, Heser DW, Heublein D, Granger JP, Opgenorth TJ, Reeder GS (1986) Atrial natriuretic peptide elevation in congestive heart failure in the human. Science 231:1145–1147PubMedCrossRefGoogle Scholar
  14. 14.
    Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281:33487–33496PubMedCrossRefGoogle Scholar
  15. 15.
    Buxton IL, Duan D (2008) Cyclic GMP/protein kinase G phosphorylation of Smad3 blocks transforming growth factor-beta-induced nuclear Smad translocation: a key antifibrogenic mechanism of atrial natriuretic peptide. Circ Res 102:151–153. PubMedCrossRefGoogle Scholar
  16. 16.
    Camacho Londono JE, Tian Q, Hammer K, Schroder L, Camacho Londono J, Reil JC, He T, Oberhofer M, Mannebach S, Mathar I, Philipp SE, Tabellion W, Schweda F, Dietrich A, Kaestner L, Laufs U, Birnbaumer L, Flockerzi V, Freichel M, Lipp P (2015) A background Ca2+ entry pathway mediated by TRPC1/TRPC4 is critical for development of pathological cardiac remodelling. Eur Heart J 36:2257–2266. PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cao L, Gardner DG (1995) Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension 25:227–234PubMedCrossRefGoogle Scholar
  18. 18.
    Carnicer R, Crabtree MJ, Sivakumaran V, Casadei B, Kass DA (2013) Nitric oxide synthases in heart failure. Antioxid Redox Signal 18:1078–1099. PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Castro LR, Verde I, Cooper DM, Fischmeister R (2006) Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation 113:2221–2228. PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cocheme HM, Reinhold J, Lilley KS, Partridge L, Fearnley IM, Robinson AJ, Hartley RC, Smith RA, Krieg T, Brookes PS, Murphy MP (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med 19:753–759. PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord ENJ, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa ASH, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515:431–435. PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Chun TH, Itoh H, Ogawa Y, Tamura N, Takaya K, Igaki T, Yamashita J, Doi K, Inoue M, Masatsugu K, Korenaga R, Ando J, Nakao K (1997) Shear stress augments expression of C-type natriuretic peptide and adrenomedullin. Hypertension 29:1296–1302PubMedCrossRefGoogle Scholar
  23. 23.
    Costa AD, Garlid KD (2008) Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT. Am J Physiol Heart Circ Physiol 295:H874–H882. PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 97:329–336. PubMedCrossRefGoogle Scholar
  25. 25.
    Crowley SD, Gurley SB, Herrera MJ, Ruiz P, Griffiths R, Kumar AP, Kim HS, Smithies O, Le TH, Coffman TM (2006) Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA 103:17985–17990. PubMedCrossRefGoogle Scholar
  26. 26.
    Das A, Samidurai A, Hoke NN, Kukreja RC, Salloum FN (2015) Hydrogen sulfide mediates the cardioprotective effects of gene therapy with PKG-Ialpha. Basic Res Cardiol 110:42. PubMedCrossRefGoogle Scholar
  27. 27.
    Das A, Smolenski A, Lohmann SM, Kukreja RC (2006) Cyclic GMP-dependent protein kinase Ialpha attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte. J Biol Chem 281:38644–38652. PubMedCrossRefGoogle Scholar
  28. 28.
    Das A, Xi L, Kukreja RC (2008) Protein kinase G-dependent cardioprotective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3beta. J Biol Chem 283:29572–29585. PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Davis J, Burr AR, Davis GF, Birnbaumer L, Molkentin JD (2012) A TRPC6-dependent pathway for myofibroblast transdifferentiation and wound healing in vivo. Dev Cell 23:705–715. PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584. PubMedCrossRefGoogle Scholar
  31. 31.
    Distler JH, Feghali-Bostwick C, Soare A, Asano Y, Distler O, Abraham DJ (2017) Review: frontiers of antifibrotic therapy in systemic sclerosis. Arthritis Rheumatol 69:257–267. PubMedCrossRefGoogle Scholar
  32. 32.
    Domes K, Patrucco E, Loga F, Dietrich A, Birnbaumer L, Wegener JW, Hofmann F (2015) Murine cardiac growth, TRPC channels, and cGMP kinase I. Pflug Arch 467:2229–2234. CrossRefGoogle Scholar
  33. 33.
    Ecker T, Gobel C, Hullin R, Rettig R, Seitz G, Hofmann F (1989) Decreased cardiac concentration of cGMP kinase in hypertensive animals. An index for cardiac vascularization? Circ Res 65:1361–1369PubMedCrossRefGoogle Scholar
  34. 34.
    Edwards BS, Zimmerman RS, Schwab TR, Heublein DM, Burnett JC Jr (1988) Atrial stretch, not pressure, is the principal determinant controlling the acute release of atrial natriuretic factor. Circ Res 62:191–195PubMedCrossRefGoogle Scholar
  35. 35.
    Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R (2014) Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 66:1142–1174. PubMedCrossRefGoogle Scholar
  36. 36.
    Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271:22810–22814PubMedCrossRefGoogle Scholar
  37. 37.
    Fiedler B, Feil R, Hofmann F, Willenbockel C, Drexler H, Smolenski A, Lohmann SM, Wollert KC (2006) cGMP-dependent protein kinase type I inhibits TAB 1-p38 mitogen-activated protein kinase apoptosis signaling in cardiac myocytes. J Biol Chem 281:32831–32840. PubMedCrossRefGoogle Scholar
  38. 38.
    Frankenreiter S, Bednarczyk P, Kniess A, Bork NI, Straubinger J, Koprowski P, Wrzosek A, Mohr E, Logan A, Murphy MP, Gawaz M, Krieg T, Szewczyk A, Nikolaev VO, Ruth P, Lukowski R (2017) cGMP-elevating compounds and ischemic conditioning provide cardioprotection against ischemia and reperfusion injury via cardiomyocyte-specific BK channels. Circulation 136:2337–2355. PubMedCrossRefGoogle Scholar
  39. 39.
    Frankenreiter S, Groneberg D, Kuret A, Krieg T, Ruth P, Friebe A, Lukowski R (2018) Cardioprotection by ischemic postconditioning and cGMP-elevating agents involves cardiomyocyte nitric oxide-sensitive guanylyl cyclase. Cardiovasc Res. PubMedCrossRefGoogle Scholar
  40. 40.
    Frantz S, Klaiber M, Baba HA, Oberwinkler H, Volker K, Gabetaner B, Bayer B, Abebetaer M, Schuh K, Feil R, Hofmann F, Kuhn M (2013) Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I. Eur Heart J 34:1233–1244. PubMedCrossRefGoogle Scholar
  41. 41.
    Friebe A, Koesling D (2003) Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res 93:96–105PubMedCrossRefGoogle Scholar
  42. 42.
    Fujisaki H, Ito H, Hirata Y, Tanaka M, Hata M, Lin M, Adachi S, Akimoto H, Marumo F, Hiroe M (1995) Natriuretic peptides inhibit angiotensin II-induced proliferation of rat cardiac fibroblasts by blocking endothelin-1 gene expression. J Clin Investig 96:1059–1065PubMedCrossRefGoogle Scholar
  43. 43.
    Garbers DL, Lowe DG (1994) Guanylyl cyclase receptors. J Biol Chem 269:30741–30744PubMedGoogle Scholar
  44. 44.
    Geiselhöringer A, Gaisa M, Hofmann F, Schlossmann J (2004) Distribution of IRAG and cGKI-isoforms in murine tissues. FEBS Lett 575:19–22PubMedCrossRefGoogle Scholar
  45. 45.
    Gheorghiade M, Greene SJ, Butler J, Filippatos G, Lam CS, Maggioni AP, Ponikowski P, Shah SJ, Solomon SD, Kraigher-Krainer E, Samano ET, Muller K, Roessig L, Pieske B, Investigators S-R, Coordinators (2015) Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial. JAMA 314:2251–2262. PubMedCrossRefGoogle Scholar
  46. 46.
    Gillette TG, Hill JA (2013) PKG primes the proteasome. Circulation 128:325–327. PubMedCrossRefGoogle Scholar
  47. 47.
    Gyurko R, Kuhlencordt P, Fishman MC, Huang PL (2000) Modulation of mouse cardiac function in vivo by eNOS and ANP. Am J Physiol Heart Circ Physiol 278:H971–H981PubMedCrossRefGoogle Scholar
  48. 48.
    Hartzell HC, Mery PF, Fischmeister R, Szabo G (1991) Sympathetic regulation of cardiac calcium current is due exclusively to cAMP-dependent phosphorylation. Nature 351:573–576. PubMedCrossRefGoogle Scholar
  49. 49.
    Heusch G (2017) Cardioprotection is alive but remains enigmatic: the nitric oxide–protein kinases–mitochondria signaling axis. Circulation 136:2356–2358. PubMedCrossRefGoogle Scholar
  50. 50.
    Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. PubMedCrossRefGoogle Scholar
  51. 51.
    Heusch G, Gersh BJ (2017) The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J 38:774–784. PubMedCrossRefGoogle Scholar
  52. 52.
    Holtwick R, Van Eickels M, Skryabin BV, Baba HA, Bubikat A, Begrow F, Schneider MD, Garbers DL, Kuhn M (2003) Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J Clin Investig 111:1399–1407PubMedCrossRefGoogle Scholar
  53. 53.
    Inserte J, Barba I, Poncelas-Nozal M, Hernando V, Agullo L, Ruiz-Meana M, Garcia-Dorado D (2011) cGMP/PKG pathway mediates myocardial postconditioning protection in rat hearts by delaying normalization of intracellular acidosis during reperfusion. J Mol Cell Cardiol 50:903–909. PubMedCrossRefGoogle Scholar
  54. 54.
    Irvine JC, Ganthavee V, Love JE, Alexander AE, Horowitz JD, Stasch JP, Kemp-Harper BK, Ritchie RH (2012) The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy. PLoS One 7:e44481. PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    John SW, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, Flynn TG, Smithies O (1995) Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science 267:679–681PubMedCrossRefGoogle Scholar
  56. 56.
    Kapoun AM, Liang F, O’Young G, Damm DL, Quon D, White RT, Munson K, Lam A, Schreiner GF, Protter AA (2004) B-type natriuretic peptide exerts broad functional opposition to transforming growth factor-beta in primary human cardiac fibroblasts: fibrosis, myofibroblast conversion, proliferation, and inflammation. Circ Res 94:453–461. PubMedCrossRefGoogle Scholar
  57. 57.
    Kass DA, Champion HC, Beavo JA (2007) Phosphodiesterase type 5: expanding roles in cardiovascular regulation. Circ Res 101:1084–1095. PubMedCrossRefGoogle Scholar
  58. 58.
    Kato M, Blanton R, Wang GR, Judson TJ, Abe Y, Myoishi M, Karas RH, Mendelsohn ME (2012) Direct binding and regulation of RhoA protein by cyclic GMP-dependent protein kinase Ialpha. J Biol Chem 287:41342–41351. PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kato T, Muraski J, Chen Y, Tsujita Y, Wall J, Glembotski CC, Schaefer E, Beckerle M, Sussman MA (2005) Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP-dependent nuclear accumulation of zyxin and Akt. J Clin Investig 115:2716–2730. PubMedCrossRefGoogle Scholar
  60. 60.
    Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee SJ, Karch J, Molkentin JD (2017) Fibroblast-specific TGF-beta-Smad2/3 signaling underlies cardiac fibrosis. J Clin Investig 127:3770–3783. PubMedCrossRefGoogle Scholar
  61. 61.
    Kilic A, Velic A, De Windt LJ, Fabritz L, Voss M, Mitko D, Zwiener M, Baba HA, van Eickels M, Schlatter E, Kuhn M (2005) Enhanced activity of the myocardial Na+/H+ exchanger NHE-1 contributes to cardiac remodeling in atrial natriuretic peptide receptor-deficient mice. Circulation 112:2307–2317. PubMedCrossRefGoogle Scholar
  62. 62.
    Kinoshita H, Kuwahara K, Nishida M, Jian Z, Rong X, Kiyonaka S, Kuwabara Y, Kurose H, Inoue R, Mori Y, Li Y, Nakagawa Y, Usami S, Fujiwara M, Yamada Y, Minami T, Ueshima K, Nakao K (2010) Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ Res 106:1849–1860. PubMedCrossRefGoogle Scholar
  63. 63.
    Klaiber M, Dankworth B, Kruse M, Hartmann M, Nikolaev VO, Yang RB, Volker K, Gassner B, Oberwinkler H, Feil R, Freichel M, Groschner K, Skryabin BV, Frantz S, Birnbaumer L, Pongs O, Kuhn M (2011) A cardiac pathway of cyclic GMP-independent signaling of guanylyl cyclase A, the receptor for atrial natriuretic peptide. Proc Natl Acad Sci USA 108:18500–18505. PubMedCrossRefGoogle Scholar
  64. 64.
    Koitabashi N, Aiba T, Hesketh GG, Rowell J, Zhang M, Takimoto E, Tomaselli GF, Kass DA (2010) Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation novel mechanism of cardiac stress modulation by PDE5 inhibition. J Mol Cell Cardiol 48:713–724. PubMedCrossRefGoogle Scholar
  65. 65.
    Kojda G, Kottenberg K (1999) Regulation of basal myocardial function by NO. Cardiovasc Res 41:514–523PubMedCrossRefGoogle Scholar
  66. 66.
    Krebs EG, Beavo JA (1979) Phosphorylation–dephosphorylation of enzymes. Annu Rev Biochem 48:923–959. PubMedCrossRefGoogle Scholar
  67. 67.
    Kuhn M (2009) Function and dysfunction of mammalian membrane guanylyl cyclase receptors: lessons from genetic mouse models and implications for human diseases. Handb Exp Pharmacol 191:47–69CrossRefGoogle Scholar
  68. 68.
    Kumar R, Joyner RW, Komalavilas P, Lincoln TM (1999) Analysis of expression of cGMP-dependent protein kinase in rabbit heart cells. J Pharmacol Exp Ther 291:967–975PubMedGoogle Scholar
  69. 69.
    Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Investig 116:3114–3126PubMedCrossRefGoogle Scholar
  70. 70.
    Lee DI, Zhu G, Sasaki T, Cho GS, Hamdani N, Holewinski R, Jo SH, Danner T, Zhang M, Rainer PP, Bedja D, Kirk JA, Ranek MJ, Dostmann WR, Kwon C, Margulies KB, Van Eyk JE, Paulus WJ, Takimoto E, Kass DA (2015) Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 519:472–476. PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Li P, Wang D, Lucas J, Oparil S, Xing D, Cao X, Novak L, Renfrow MB, Chen YF (2008) Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res 102:185–192. PubMedCrossRefGoogle Scholar
  72. 72.
    Lilyanna S, Peh MT, Liew OW, Wang P, Moore PK, Richards AM, Martinez EC (2015) GYY4137 attenuates remodeling, preserves cardiac function and modulates the natriuretic peptide response to ischemia. J Mol Cell Cardiol 87:27–37. PubMedCrossRefGoogle Scholar
  73. 73.
    Loga F, Domes K, Freichel M, Flockerzi V, Dietrich A, Birnbaumer L, Hofmann F, Wegener JW (2013) The role of cGMP/cGKI signalling and Trpc channels in regulation of vascular tone. Cardiovasc Res 100:280–287. PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lukowski R, Krieg T, Rybalkin SD, Beavo J, Hofmann F (2014) Turning on cGMP-dependent pathways to treat cardiac dysfunctions: boom, bust, and beyond. Trends Pharmacol Sci 35:404–413. PubMedCrossRefGoogle Scholar
  75. 75.
    Lukowski R, Rybalkin SD, Loga F, Leiss V, Beavo JA, Hofmann F (2010) Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. Proc Natl Acad Sci USA 107:5646–5651. PubMedCrossRefGoogle Scholar
  76. 76.
    Luo C, Gangadharan V, Bali KK, Xie RG, Agarwal N, Kurejova M, Tappe-Theodor A, Tegeder I, Feil S, Lewin G, Polgar E, Todd AJ, Schlossmann J, Hofmann F, Liu DL, Hu SJ, Feil R, Kuner T, Kuner R (2012) Presynaptically localized cyclic GMP-dependent protein kinase 1 is a key determinant of spinal synaptic potentiation and pain hypersensitivity. PLoS Biol 10:e1001283. PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Maki T, Horio T, Yoshihara F, Suga S, Takeo S, Matsuo H, Kangawa K (2000) Effect of neutral endopeptidase inhibitor on endogenous atrial natriuretic peptide as a paracrine factor in cultured cardiac fibroblasts. Br J Pharmacol 131:1204–1210PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Martin P, Mora I, Cortes MA, Calleros L, Garcia-Jerez A, Ortiz A, Rodriguez-Puyol M, Rodriguez-Puyol D, Olmos G (2014) Relevant role of PKG in the progression of fibrosis induced by TNF-like weak inducer of apoptosis. Am J Physiol Ren Physiol 307:F75–F85. CrossRefGoogle Scholar
  79. 79.
    Masuyama H, Tsuruda T, Sekita Y, Hatakeyama K, Imamura T, Kato J, Asada Y, Stasch JP, Kitamura K (2009) Pressure-independent effects of pharmacological stimulation of soluble guanylate cyclase on fibrosis in pressure-overloaded rat heart. Hypertens Res 32:597–603. PubMedCrossRefGoogle Scholar
  80. 80.
    Matei A-E, Beyer E, Györfi A-H, Soare A, Chen C-W, Dees C, Bergmann C, Ramming A, Friebe A, Hofmann F, Distler O, Schett G, Distler J (2018) Protein kinases G are essential downstream mediators of the anti-fibrotic effects of sGC stimulators. Ann Rheum Dis. (Epub ahead of print) PubMedCrossRefGoogle Scholar
  81. 81.
    McLellan J, Heneghan CJ, Perera R, Clements AM, Glasziou PP, Kearley KE, Pidduck N, Roberts NW, Tyndel S, Wright FL, Bankhead C (2016) B-type natriuretic peptide-guided treatment for heart failure. Cochrane Database Syst Rev 12:CD008966. PubMedCrossRefGoogle Scholar
  82. 82.
    Mery PF, Lohmann SM, Walter U, Fischmeister R (1991) Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 88:1197–1201PubMedCrossRefGoogle Scholar
  83. 83.
    Mery PF, Pavoine C, Belhassen L, Pecker F, Fischmeister R (1993) Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. J Biol Chem 268:26286–26295PubMedGoogle Scholar
  84. 84.
    Methner C, Lukowski R, Grube K, Loga F, Smith RA, Murphy MP, Hofmann F, Krieg T (2013) Protection through postconditioning or a mitochondria-targeted S-nitrosothiol is unaffected by cardiomyocyte-selective ablation of protein kinase G. Basic Res Cardiol 108:337. PubMedCrossRefGoogle Scholar
  85. 85.
    Michael SK, Surks HK, Wang Y, Zhu Y, Blanton R, Jamnongjit M, Aronovitz M, Baur W, Ohtani K, Wilkerson MK, Bonev AD, Nelson MT, Karas RH, Mendelsohn ME (2008) High blood pressure arising from a defect in vascular function. Proc Natl Acad Sci USA 105:6702–6707PubMedCrossRefGoogle Scholar
  86. 86.
    Mukoyama M, Nakao K, Saito Y, Ogawa Y, Hosoda K, Suga S, Shirakami G, Jougasaki M, Imura H (1990) Increased human brain natriuretic peptide in congestive heart failure. N Engl J Med 323:757–758. PubMedCrossRefGoogle Scholar
  87. 87.
    Nakamura T, Ranek MJ, Lee DI, Shalkey Hahn V, Kim C, Eaton P, Kass DA (2015) Prevention of PKG1alpha oxidation augments cardioprotection in the stressed heart. J Clin Investig 125:2468–2472. PubMedCrossRefGoogle Scholar
  88. 88.
    Nishida M, Watanabe K, Sato Y, Nakaya M, Kitajima N, Ide T, Inoue R, Kurose H (2010) Phosphorylation of TRPC6 channels at Thr69 is required for anti-hypertrophic effects of phosphodiesterase 5 inhibition. J Biol Chem 285:13244–13253. PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, Heizer GM, Komajda M, Massie BM, McMurray JJ, Nieminen MS, Reist CJ, Rouleau JL, Swedberg K, Adams KF Jr, Anker SD, Atar D, Battler A, Botero R, Bohidar NR, Butler J, Clausell N, Corbalan R, Costanzo MR, Dahlstrom U, Deckelbaum LI, Diaz R, Dunlap ME, Ezekowitz JA, Feldman D, Felker GM, Fonarow GC, Gennevois D, Gottlieb SS, Hill JA, Hollander JE, Howlett JG, Hudson MP, Kociol RD, Krum H, Laucevicius A, Levy WC, Mendez GF, Metra M, Mittal S, Oh BH, Pereira NL, Ponikowski P, Tang WH, Tanomsup S, Teerlink JR, Triposkiadis F, Troughton RW, Voors AA, Whellan DJ, Zannad F, Califf RM (2011) Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 365:32–43. PubMedCrossRefGoogle Scholar
  90. 90.
    Oceandy D, Cartwright EJ, Emerson M, Prehar S, Baudoin FM, Zi M, Alatwi N, Venetucci L, Schuh K, Williams JC, Armesilla AL, Neyses L (2007) Neuronal nitric oxide synthase signaling in the heart is regulated by the sarcolemmal calcium pump 4b. Circulation 115:483–492. PubMedCrossRefGoogle Scholar
  91. 91.
    Oliver PM, Fox JE, Kim R, Rockman HA, Kim HS, Reddick RL, Pandey KN, Milgram SL, Smithies O, Maeda N (1997) Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc Natl Acad Sci USA 94:14730–14735PubMedCrossRefGoogle Scholar
  92. 92.
    Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H (2006) TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 25:5305–5316PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424. PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Patrucco E, Domes K, Sbroggio M, Blaich A, Schlossmann J, Desch M, Rybalkin SD, Beavo JA, Lukowski R, Hofmann F (2014) Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy and fibrosis. Proc Natl Acad Sci USA 111:12925–12929. PubMedCrossRefGoogle Scholar
  95. 95.
    Pieske B, Maggioni AP, Lam CSP, Pieske-Kraigher E, Filippatos G, Butler J, Ponikowski P, Shah SJ, Solomon SD, Scalise AV, Mueller K, Roessig L, Gheorghiade M (2017) Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J 38:1119–1127. PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27:47–72. PubMedCrossRefGoogle Scholar
  97. 97.
    Potter LR, Yoder AR, Flora DR, Antos LK, Dickey DM (2009) Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb Exp Pharmacol. PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Rainer PP, Hao S, Vanhoutte D, Lee DI, Koitabashi N, Molkentin JD, Kass DA (2014) Cardiomyocyte-specific transforming growth factor beta suppression blocks neutrophil infiltration, augments multiple cytoprotective cascades, and reduces early mortality after myocardial infarction. Circ Res 114:1246–1257. PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Ranek MJ, Terpstra EJ, Li J, Kass DA, Wang X (2013) Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins. Circulation 128:365–376. PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, LeWinter MM, Rouleau JL, Bull DA, Mann DL, Deswal A, Stevenson LW, Givertz MM, Ofili EO, O’Connor CM, Felker GM, Goldsmith SR, Bart BA, McNulty SE, Ibarra JC, Lin G, Oh JK, Patel MR, Kim RJ, Tracy RP, Velazquez EJ, Anstrom KJ, Hernandez AF, Mascette AM, Braunwald E, Trial R (2013) Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309:1268–1277. PubMedCrossRefGoogle Scholar
  101. 101.
    Reinke Y, Gross S, Eckerle LG, Hertrich I, Busch M, Busch R, Riad A, Rauch BH, Stasch JP, Dorr M, Felix SB (2015) The soluble guanylate cyclase stimulator riociguat and the soluble guanylate cyclase activator cinaciguat exert no direct effects on contractility and relaxation of cardiac myocytes from normal rats. Eur J Pharmacol 767:1–9. PubMedCrossRefGoogle Scholar
  102. 102.
    Rybalkin SD, Rybalkina IG, Feil R, Hofmann F, Beavo JA (2002) Regulation of cGMP-specific phosphodiesterase (PDE5) phosphorylation in smooth muscle cells. J Biol Chem 277:3310–3317PubMedCrossRefGoogle Scholar
  103. 103.
    Salloum FN, Chau VQ, Hoke NN, Abbate A, Varma A, Ockaili RA, Toldo S, Kukreja RC (2009) Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase g-dependent generation of hydrogen sulfide. Circulation 120:S31–S36. PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sandner P, Stasch JP (2017) Anti-fibrotic effects of soluble guanylate cyclase stimulators and activators: a review of the preclinical evidence. Respir Med 122(Suppl 1):S1–S9. PubMedCrossRefGoogle Scholar
  105. 105.
    Sauzeau V, Le Jeune H, Cario-Toumaniantz C, Smolenski A, Lohmann SM, Bertoglio J, Chardin P, Pacaud P, Loirand G (2000) Cyclic GMP-dependent protein kinase signaling pathway inhibits RhoA-induced Ca2+ sensitization of contraction in vascular smooth muscle. J Biol Chem 275:21722–21729PubMedCrossRefGoogle Scholar
  106. 106.
    Schinner E, Wetzl V, Schramm A, Kees F, Sandner P, Stasch JP, Hofmann F, Schlossmann J (2017) Inhibition of the TGFbeta signalling pathway by cGMP and cGMP-dependent kinase I in renal fibrosis. FEBS Open Bio 7:550–561. PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F, Ruth P (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404:197–201PubMedCrossRefGoogle Scholar
  108. 108.
    Schroder F, Klein G, Fiedler B, Bastein M, Schnasse N, Hillmer A, Ames S, Gambaryan S, Drexler H, Walter U, Lohmann SM, Wollert KC (2003) Single L-type Ca(2+) channel regulation by cGMP-dependent protein kinase type I in adult cardiomyocytes from PKG I transgenic mice. Cardiovasc Res 60:268–277PubMedCrossRefGoogle Scholar
  109. 109.
    Seo K, Rainer PP, Lee DI, Hao S, Bedja D, Birnbaumer L, Cingolani OH, Kass DA (2014) Hyperactive adverse mechanical stress responses in dystrophic heart are coupled to transient receptor potential canonical 6 and blocked by cGMP-protein kinase G modulation. Circ Res 114:823–832. PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Sharma AK, Zhou GP, Kupferman J, Surks HK, Christensen EN, Chou JJ, Mendelsohn ME, Rigby AC (2008) Probing the interaction between the coiled coil leucine zipper of cGMP-dependent protein kinase Ialpha and the C terminus of the myosin binding subunit of the myosin light chain phosphatase. J Biol Chem 283:32860–32869. PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83:1325–1358PubMedCrossRefGoogle Scholar
  112. 112.
    Stasch JP, Pacher P, Evgenov OV (2011) Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 123:2263–2273. PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Suga S, Nakao K, Itoh H, Komatsu Y, Ogawa Y, Hama N, Imura H (1992) Endothelial production of C-type natriuretic peptide and its marked augmentation by transforming growth factor-beta. Possible existence of “vascular natriuretic peptide system”. J Clin Investig 90:1145–1149. PubMedCrossRefGoogle Scholar
  114. 114.
    Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, Ito M, Lincoln TM, Mendelsohn ME (1999) Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Ialpha. Science 286:1583–1587PubMedCrossRefGoogle Scholar
  115. 115.
    Takahashi S, Lin H, Geshi N, Mori Y, Kawarabayashi Y, Takami N, Mori MX, Honda A, Inoue R (2008) Nitric oxide–cGMP–protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J Physiol 586:4209–4223. PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11:214–222PubMedCrossRefGoogle Scholar
  117. 117.
    Takimoto E, Koitabashi N, Hsu S, Ketner EA, Zhang M, Nagayama T, Bedja D, Gabrielson KL, Blanton R, Siderovski DP, Mendelsohn ME, Kass DA (2009) Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. J Clin Investig 119:408–420. PubMedCrossRefGoogle Scholar
  118. 118.
    Tamura N, Ogawa Y, Chusho H, Nakamura K, Nakao K, Suda M, Kasahara M, Hashimoto R, Katsuura G, Mukoyama M, Itoh H, Saito Y, Tanaka I, Otani H, Katsuki M (2000) Cardiac fibrosis in mice lacking brain natriuretic peptide. Proc Natl Acad Sci USA 97:4239–4244. PubMedCrossRefGoogle Scholar
  119. 119.
    Tang M, Wang G, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y, Mendelsohn ME (2003) Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 9:1506–1512PubMedCrossRefGoogle Scholar
  120. 120.
    Thoonen R, Giovanni S, Govindan S, Lee DI, Wang GR, Calamaras TD, Takimoto E, Kass DA, Sadayappan S, Blanton RM (2015) Molecular screen identifies cardiac myosin-binding protein-C as a protein kinase G-Ialpha substrate. Circ Heart Fail 8:1115–1122. PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Tokudome T, Kishimoto I, Horio T, Arai Y, Schwenke DO, Hino J, Okano I, Kawano Y, Kohno M, Miyazato M, Nakao K, Kangawa K (2008) Regulator of G-protein signaling subtype 4 mediates antihypertrophic effect of locally secreted natriuretic peptides in the heart. Circulation 117:2329–2339. PubMedCrossRefGoogle Scholar
  122. 122.
    Vandecasteele G, Eschenhagen T, Scholz H, Stein B, Verde I, Fischmeister R (1999) Muscarinic and beta-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nat Med 5:331–334PubMedCrossRefGoogle Scholar
  123. 123.
    Vandenwijngaert S, Swinnen M, Walravens AS, Beerens M, Gillijns H, Caluwe E, Tainsh RE, Nathan DI, Allen K, Brouckaert P, Bartunek J, Scherrer-Crosbie M, Bloch KD, Bloch DB, Janssens SP, Buys ES (2017) Decreased soluble guanylate cyclase contributes to cardiac dysfunction induced by chronic doxorubicin treatment in mice. Antioxid Redox Signal 26:153–164. PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Wagner LE 2nd, Li WH, Yule DI (2003) Phosphorylation of type-1 inositol 1,4,5-trisphosphate receptors by cyclic nucleotide-dependent protein kinases: a mutational analysis of the functionally important sites in the S2+ and S2− splice variants. J Biol Chem 278:45811–45817. PubMedCrossRefGoogle Scholar
  125. 125.
    Wang Y, de Waard MC, Sterner-Kock A, Stepan H, Schultheiss HP, Duncker DJ, Walther T (2007) Cardiomyocyte-restricted over-expression of C-type natriuretic peptide prevents cardiac hypertrophy induced by myocardial infarction in mice. Eur J Heart Fail 9:548–557. PubMedCrossRefGoogle Scholar
  126. 126.
    Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2012) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10:15. PubMedCrossRefGoogle Scholar
  127. 127.
    Wegener JW, Nawrath H, Wolfsgruber W, Kuhbandner S, Werner C, Hofmann F, Feil R (2002) cGMP-dependent protein kinase I mediates the negative inotropic effect of cGMP in the murine myocardium. Circ Res 90:18–20PubMedCrossRefGoogle Scholar
  128. 128.
    Werner CG, Godfrey V, Arnold RR, Featherstone GL, Bender D, Schlossmann J, Schiemann M, Hofmann F, Pryzwansky KB (2005) Neutrophil dysfunction in guanosine 3′,5′-cyclic monophosphate-dependent protein kinase I-deficient mice. J Immunol 175:1919–1929PubMedCrossRefGoogle Scholar
  129. 129.
    West MB, Rokosh G, Obal D, Velayutham M, Xuan YT, Hill BG, Keith RJ, Schrader J, Guo Y, Conklin DJ, Prabhu SD, Zweier JL, Bolli R, Bhatnagar A (2008) Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition. Circulation 118:1970–1978. PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Wettschureck N, Rutten H, Zywietz A, Gehring D, Wilkie TM, Chen J, Chien KR, Offermanns S (2001) Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes. Nat Med 7:1236–1240PubMedCrossRefGoogle Scholar
  131. 131.
    Wyatt TA, Lincoln TM, Pryzwansky KB (1991) Vimentin is transiently co-localized with and phosphorylated by cyclic GMP-dependent protein kinase in formyl-peptide-stimulated neutrophils. J Biol Chem 266:21274–21280PubMedGoogle Scholar
  132. 132.
    Xu KY, Huso DL, Dawson TM, Bredt DS, Becker LC (1999) Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc Natl Acad Sci USA 96:657–662PubMedCrossRefGoogle Scholar
  133. 133.
    Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237PubMedCrossRefGoogle Scholar
  134. 134.
    Yao X (2007) TRPC, cGMP-dependent protein kinases and cytosolic Ca2+. Handb Exp Pharmacol 179:527–540CrossRefGoogle Scholar
  135. 135.
    Yasoda A, Nakao K (2010) Translational research of C-type natriuretic peptide (CNP) into skeletal dysplasias. Endocr J 57:659–666PubMedCrossRefGoogle Scholar
  136. 136.
    Zhu G, Groneberg D, Sikka G, Hori D, Ranek MJ, Nakamura T, Takimoto E, Paolocci N, Berkowitz DE, Friebe A, Kass DA (2015) Soluble guanylate cyclase is required for systemic vasodilation but not positive inotropy induced by nitroxyl in the mouse. Hypertension 65:385–392. PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Pharmakologie und ToxikologieTU MünchenMunichGermany

Personalised recommendations