Advertisement

Apolipoprotein A-I proteolysis in aortic valve stenosis: role of cathepsin S

  • C. Gebhard
  • F. Maafi
  • B. E. Stähli
  • J. Dang
  • W. Nachar
  • A. B. de Oliveira Moraes
  • A. E. Kernaleguen
  • V. Lavoie
  • M. Mecteau
  • T. Mihalache-Avram
  • Y. Shi
  • M. Chabot-Blanchet
  • D. Busseuil
  • D. Rhainds
  • E. Rhéaume
  • Jean-Claude Tardif
Original Contribution
  • 128 Downloads

Abstract

Aortic valve stenosis (AVS) is the most common valvular heart disease in the Western world. Therapy based on apolipoprotein A-I (apoA-I), the major protein component of high-density lipoproteins, results in AVS regression in experimental models. Nevertheless, apoA-I degradation by proteases might lead to suboptimal efficacy of such therapy. An activatable probe using a quenched fluorescently labeled full-length apoA-I protein was generated to assess apoA-I-degrading protease activity in plasma derived from 44 men and 20 women with severe AVS (age 65.0 ± 10.4 years) as well as from a rabbit model of AVS. In human and rabbit AVS plasma, apoA-I-degrading protease activity was significantly higher than in controls (humans: 0.038 ± 0.009 vs 0.022 ± 0.005 RFU/s, p < 0.0001; rabbits: 0.033 ± 0.016 vs 0.017 ± 0.005 RFU/s, p = 0.041). Through the use of protease inhibitors, we identified metalloproteinases (MMP) as exerting the most potent proteolytic effect on apoA-I in AVS rabbits (67%, p < 0.05 vs control), while the cysteine protease cathepsin S accounted for 54.2% of apoA-I degradation in human plasma (p < 0.05 vs control) with the maximum effect seen in women (68.8%, p < 0.05 vs men). Accordingly, cathepsin S activity correlated significantly with mean transaortic pressure gradient in women (r = 0.5, p = 0.04) but not in men (r = − 0.09, p = 0.60), and was a significant independent predictor of disease severity in women (standardized beta coefficient 0.832, p < 0.001) when tested in a linear regression analysis. ApoA-I proteolysis is increased in AVS. Targeting circulating cathepsin S may lead to new therapies for human aortic valve disease.

Keywords

Protease activity Apolipoprotein A-I Aortic valve stenosis Cathepsin S 

Notes

Funding

This work was supported by the Swiss National Science Foundation (SNSF, grants P3SMP3_151740/1142741 to BES and CG), the Novartis Foundation for Medical-Biological Research, Switzerland (to BES and CG), and the Gottfried und Julia Bangerter-Rhyner-Foundation, Switzerland (to BES). Dr. Tardif holds the Canada Research Chair in translational and personalized medicine and the Pfizer-endowed research chair in atherosclerosis at the Université de Montréal.

Compliance with ethical standards

Conflict of interest

Dr. Tardif has received research grants from Amarin, AstraZeneca, DalCor, Esperion, Ionis, Merck, Pfizer, Sanofi, and Servier; received honoraria from DalCor, Pfizer, Sanofi, and Servier; and holds minor equity interest in DalCor. The other authors report no conflict of interest. Dr Gebhard and Dr Stähli have received research grants from the Novartis Foundation, Switzerland.

Supplementary material

395_2018_689_MOESM1_ESM.pptx (59 kb)
Supplementary material 1 (PPTX 59 kb)
395_2018_689_MOESM2_ESM.docx (17 kb)
Supplementary material 2 (DOCX 16 kb)

References

  1. 1.
    Aikawa E, Whittaker P, Farber M, Mendelson K, Padera RF, Aikawa M, Schoen FJ (2006) Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation 113:1344–1352.  https://doi.org/10.1161/CIRCULATIONAHA.105.591768 CrossRefPubMedGoogle Scholar
  2. 2.
    Aikawa E, Aikawa M, Libby P, Figueiredo JL, Rusanescu G, Iwamoto Y, Fukuda D, Kohler RH, Shi GP, Jaffer FA, Weissleder R (2009) Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation 119:1785–1794.  https://doi.org/10.1161/CIRCULATIONAHA.108.827972 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Aikawa M, Rabkin E, Okada Y, Voglic SJ, Clinton SK, Brinckerhoff CE, Sukhova GK, Libby P (1998) Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation 97:2433–2444.  https://doi.org/10.1161/01.CIR.97.24.2433 CrossRefPubMedGoogle Scholar
  4. 4.
    Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, Iung B, Otto CM, Pellikka PA, Quinones M (2009) Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr 22:1–23.  https://doi.org/10.1016/j.echo.2008.11.029 (quiz 101–102) CrossRefPubMedGoogle Scholar
  5. 5.
    Blaser J, Triebel S, Maasjosthusmann U, Romisch J, Krahl-Mateblowski U, Freudenberg W, Fricke R, Tschesche H (1996) Determination of metalloproteinases, plasminogen-activators and their inhibitors in the synovial fluids of patients with rheumatoid arthritis during chemical synoviorthesis. Clin Chim Acta 244:17–33.  https://doi.org/10.1016/0009-8981(95)06172-X CrossRefPubMedGoogle Scholar
  6. 6.
    Borja MS, Ng KF, Irwin A, Hong J, Wu X, Isquith D, Zhao XQ, Prazen B, Gildengorin V, Oda MN, Vaisar T (2015) HDL-apolipoprotein A-I exchange is independently associated with cholesterol efflux capacity. J Lipid Res 56:2002–2009.  https://doi.org/10.1194/jlr.M059865 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bot I, Bot M, van Heiningen SH, van Santbrink PJ, Lankhuizen IM, Hartman P, Gruener S, Hilpert H, van Berkel TJ, Fingerle J, Biessen EA (2011) Mast cell chymase inhibition reduces atherosclerotic plaque progression and improves plaque stability in ApoE−/− mice. Cardiovasc Res 89:244–252.  https://doi.org/10.1093/cvr/cvq260 CrossRefPubMedGoogle Scholar
  8. 8.
    Busseuil D, Shi Y, Mecteau M, Brand G, Kernaleguen AE, Thorin E, Latour JG, Rheaume E, Tardif JC (2008) Regression of aortic valve stenosis by ApoA-I mimetic peptide infusions in rabbits. Br J Pharmacol 154:765–773.  https://doi.org/10.1038/bjp.2008.122 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    DiDonato JA, Huang Y, Aulak KS, Even-Or O, Gerstenecker G, Gogonea V, Wu Y, Fox PL, Tang WH, Plow EF, Smith JD, Fisher EA, Hazen SL (2013) Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma. Circulation 128:1644–1655.  https://doi.org/10.1161/CIRCULATIONAHA.113.002624 CrossRefPubMedGoogle Scholar
  10. 10.
    Drolet MC, Arsenault M, Couet J (2003) Experimental aortic valve stenosis in rabbits. J Am Coll Cardiol 41:1211–1217.  https://doi.org/10.1016/S0735-1097(03)00090-1 CrossRefPubMedGoogle Scholar
  11. 11.
    Fondard O, Detaint D, Iung B, Choqueux C, Adle-Biassette H, Jarraya M, Hvass U, Couetil JP, Henin D, Michel JB, Vahanian A, Jacob MP (2005) Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur Heart J 26:1333–1341.  https://doi.org/10.1093/eurheartj/ehi248 CrossRefPubMedGoogle Scholar
  12. 12.
    Freeman RV, Otto CM (2005) Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 111:3316–3326.  https://doi.org/10.1161/CIRCULATIONAHA.104.486738 CrossRefPubMedGoogle Scholar
  13. 13.
    Helske S, Syvaranta S, Kupari M, Lappalainen J, Laine M, Lommi J, Turto H, Mayranpaa M, Werkkala K, Kovanen PT, Lindstedt KA (2006) Possible role for mast cell-derived cathepsin G in the adverse remodelling of stenotic aortic valves. Eur Heart J 27:1495–1504.  https://doi.org/10.1093/eurheartj/ehi706 CrossRefPubMedGoogle Scholar
  14. 14.
    Helske S, Syvaranta S, Lindstedt KA, Lappalainen J, Oorni K, Mayranpaa MI, Lommi J, Turto H, Werkkala K, Kupari M, Kovanen PT (2006) Increased expression of elastolytic cathepsins S, K, and V and their inhibitor cystatin C in stenotic aortic valves. Arterioscler Thromb Vasc Biol 26:1791–1798.  https://doi.org/10.1161/01.ATV.0000228824.01604.63 CrossRefPubMedGoogle Scholar
  15. 15.
    Hooshdaran B, Kolpakov MA, Guo X, Miller SA, Wang T, Tilley DG, Rafiq K, Sabri A (2017) Dual inhibition of cathepsin G and chymase reduces myocyte death and improves cardiac remodeling after myocardial ischemia reperfusion injury. Basic Res Cardiol 112:62.  https://doi.org/10.1007/s00395-017-0652-z CrossRefPubMedGoogle Scholar
  16. 16.
    Janicki JS, Spinale FG, Levick SP (2013) Gender differences in non-ischemic myocardial remodeling: are they due to estrogen modulation of cardiac mast cells and/or membrane type 1 matrix metalloproteinase. Pflugers Arch 465:687–697.  https://doi.org/10.1007/s00424-013-1229-9 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Joghetaei N, Akhyari P, Rauch BH, Cullen P, Lichtenberg A, Rudelius M, Pelisek J, Schmidt R (2011) Extracellular matrix metalloproteinase inducer (CD147) and membrane type 1-matrix metalloproteinase are expressed on tissue macrophages in calcific aortic stenosis and induce transmigration in an artificial valve model. J Thorac Cardiovasc Surg 142:191–198.  https://doi.org/10.1016/j.jtcvs.2010.09.051 CrossRefPubMedGoogle Scholar
  18. 18.
    Komosinska-Vassev K, Olczyk P, Winsz-Szczotka K, Kuznik-Trocha K, Klimek K, Olczyk K (2011) Age- and gender-dependent changes in connective tissue remodeling: physiological differences in circulating MMP-3, MMP-10, TIMP-1 and TIMP-2 level. Gerontology 57:44–52.  https://doi.org/10.1159/000295775 CrossRefPubMedGoogle Scholar
  19. 19.
    Lee-Rueckert M, Escola-Gil JC, Kovanen PT (2016) HDL functionality in reverse cholesterol transport—challenges in translating data emerging from mouse models to human disease. Biochim Biophys Acta 1861:566–583.  https://doi.org/10.1016/j.bbalip.2016.03.004 CrossRefPubMedGoogle Scholar
  20. 20.
    Lee M, von Eckardstein A, Lindstedt L, Assmann G, Kovanen PT (1999) Depletion of pre beta 1LpA1 and LpA4 particles by mast cell chymase reduces cholesterol efflux from macrophage foam cells induced by plasma. Arterioscler Thromb Vasc Biol 19:1066–1074.  https://doi.org/10.1161/01.ATV.19.4.1066 CrossRefPubMedGoogle Scholar
  21. 21.
    Lee M, Sommerhoff CP, von Eckardstein A, Zettl F, Fritz H, Kovanen PT (2002) Mast cell tryptase degrades HDL and blocks its function as an acceptor of cellular cholesterol. Arterioscler Thromb Vasc Biol 22:2086–2091.  https://doi.org/10.1161/01.ATV.0000041405.07367.B5 CrossRefPubMedGoogle Scholar
  22. 22.
    Lee M, Lindstedt LK, Kovanen PT (1992) Mast cell-mediated inhibition of reverse cholesterol transport. Arterioscler Thromb 12:1329–1335.  https://doi.org/10.1161/01.ATV.12.11.1329 CrossRefPubMedGoogle Scholar
  23. 23.
    Li J, Jubair S, Janicki JS (2015) Estrogen inhibits mast cell chymase release to prevent pressure overload-induced adverse cardiac remodeling. Hypertension 65:328–334.  https://doi.org/10.1161/HYPERTENSIONAHA.114.04238 CrossRefPubMedGoogle Scholar
  24. 24.
    Libby P (2013) Collagenases and cracks in the plaque. J Clin Invest 123:3201–3203.  https://doi.org/10.1172/JCI67526 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lindstedt L, Saarinen J, Kalkkinen N, Welgus H, Kovanen PT (1999) Matrix metalloproteinases-3, -7, and -12, but not -9, reduce high density lipoprotein-induced cholesterol efflux from human macrophage foam cells by truncation of the carboxyl terminus of apolipoprotein A-I. Parallel losses of pre-beta particles and the high affinity component of efflux. J Biol Chem 274:22627–22634.  https://doi.org/10.1074/jbc.274.32.22627 CrossRefPubMedGoogle Scholar
  26. 26.
    Lindstedt L, Kovanen PT (2000) Plasmin and kallikrein reduce HDL-induced cholesterol efflux from foam cells. Biochem Biophys Res Commun 277:552–557.  https://doi.org/10.1006/bbrc.2000.3704 CrossRefPubMedGoogle Scholar
  27. 27.
    Lindstedt L, Lee M, Oorni K, Bromme D, Kovanen PT (2003) Cathepsins F and S block HDL3-induced cholesterol efflux from macrophage foam cells. Biochem Biophys Res Commun 312:1019–1024.  https://doi.org/10.1016/j.bbrc.2003.11.020 CrossRefPubMedGoogle Scholar
  28. 28.
    Lindstedt L, Lee M, Castro GR, Fruchart JC, Kovanen PT (1996) Chymase in exocytosed rat mast cell granules effectively proteolyzes apolipoprotein AI-containing lipoproteins, so reducing the cholesterol efflux-inducing ability of serum and aortic intimal fluid. J Clin Invest 97:2174–2182.  https://doi.org/10.1172/JCI118658 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Maafi F, Li B, Gebhard C, Brodeur MR, Nachar W, Villeneuve L, Lesage F, Rhainds D, Rheaume E, Tardif JC (2017) Development of a new bioactivatable fluorescent probe for quantification of apolipoprotein A-I proteolytic degradation in vitro and in vivo. Atherosclerosis 258:8–19.  https://doi.org/10.1016/j.atherosclerosis.2017.01.026 CrossRefPubMedGoogle Scholar
  30. 30.
    Mendez AJ, Oram JF (1997) Limited proteolysis of high density lipoprotein abolishes its interaction with cell-surface binding sites that promote cholesterol efflux. Biochim Biophys Acta 1346:285–299.  https://doi.org/10.1016/S0005-2760(97)00031-3 CrossRefPubMedGoogle Scholar
  31. 31.
    Miller JD, Weiss RM, Heistad DD (2011) Calcific aortic valve stenosis: methods, models, and mechanisms. Circ Res 108:1392–1412.  https://doi.org/10.1161/CIRCRESAHA.110.234138 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nightingale AK, Horowitz JD (2005) Aortic sclerosis: not an innocent murmur but a marker of increased cardiovascular risk. Heart 91:1389–1393.  https://doi.org/10.1136/hrt.2004.057117 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM 3rd, Thomas JD, Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Creager MA, Curtis LH, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK, Stevenson WG, Yancy CW (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg 148:e1–e132.  https://doi.org/10.1016/j.jtcvs.2014.05.014 CrossRefPubMedGoogle Scholar
  34. 34.
    Orlowska-Baranowska E, Gora J, Baranowski R, Stoklosa P, Gadomska vel Betka L, Pedzich-Placha E, Milkowska M, Koblowska MK, Hryniewiecki T, Gaciong Z, Placha G (2014) Association of the common genetic polymorphisms and haplotypes of the chymase gene with left ventricular mass in male patients with symptomatic aortic stenosis. PLoS One 9:e96306.  https://doi.org/10.1371/journal.pone.0096306 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Polyakova V, Hein S, Kostin S, Ziegelhoeffer T, Schaper J (2004) Matrix metalloproteinases and their tissue inhibitors in pressure-overloaded human myocardium during heart failure progression. J Am Coll Cardiol 44:1609–1618.  https://doi.org/10.1016/j.jacc.2004.07.023 CrossRefPubMedGoogle Scholar
  36. 36.
    Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ (2001) Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104:2525–2532.  https://doi.org/10.1161/hc4601.099489 CrossRefPubMedGoogle Scholar
  37. 37.
    Reddy ST, Navab M, Anantharamaiah GM, Fogelman AM (2014) Apolipoprotein A-I mimetics. Curr Opin Lipidol 25:304–308.  https://doi.org/10.1097/MOL.0000000000000092 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Salminen A, Astrom P, Metso J, Soliymani R, Salo T, Jauhiainen M, Pussinen PJ, Sorsa T (2015) Matrix metalloproteinase 8 degrades apolipoprotein A-I and reduces its cholesterol efflux capacity. FASEB J 29:1435–1445.  https://doi.org/10.1096/fj.14-262956 CrossRefPubMedGoogle Scholar
  39. 39.
    Sparano JA, Bernardo P, Stephenson P, Gradishar WJ, Ingle JN, Zucker S, Davidson NE (2004) Randomized phase III trial of Marimastat versus placebo in patients with metastatic breast cancer who have responding or stable disease after first-line chemotherapy: eastern Cooperative Oncology Group trial E2196. J Clin Oncol 22:4683–4690.  https://doi.org/10.1200/JCO.2004.08.054 CrossRefPubMedGoogle Scholar
  40. 40.
    Speidl WS, Cimmino G, Ibanez B, Elmariah S, Hutter R, Garcia MJ, Fuster V, Goldman ME, Badimon JJ (2010) Recombinant apolipoprotein A-I Milano rapidly reverses aortic valve stenosis and decreases leaflet inflammation in an experimental rabbit model. Eur Heart J 31:2049–2057.  https://doi.org/10.1093/eurheartj/ehq064 CrossRefPubMedGoogle Scholar
  41. 41.
    Sukhova GK, Zhang Y, Pan JH, Wada Y, Yamamoto T, Naito M, Kodama T, Tsimikas S, Witztum JL, Lu ML, Sakara Y, Chin MT, Libby P, Shi GP (2003) Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 111:897–906.  https://doi.org/10.1172/JCI14915 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Trapeaux J, Busseuil D, Shi Y, Nobari S, Shustik D, Mecteau M, El-Hamamsy I, Lebel M, Mongrain R, Rheaume E, Tardif JC (2013) Improvement of aortic valve stenosis by ApoA-I mimetic therapy is associated with decreased aortic root and valve remodelling in mice. Br J Pharmacol 169:1587–1599.  https://doi.org/10.1111/bph.12236 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Usami Y, Matsuda K, Sugano M, Ishimine N, Kurihara Y, Sumida T, Yamauchi K, Tozuka M (2011) Detection of chymase-digested C-terminally truncated apolipoprotein A-I in normal human serum. J Immunol Methods 369:51–58.  https://doi.org/10.1016/j.jim.2011.04.002 CrossRefPubMedGoogle Scholar
  44. 44.
    Usami Y, Kobayashi Y, Kameda T, Miyazaki A, Matsuda K, Sugano M, Kawasaki K, Kurihara Y, Kasama T, Tozuka M (2013) Identification of sites in apolipoprotein A-I susceptible to chymase and carboxypeptidase A digestion. Biosci Rep 33:49–56.  https://doi.org/10.1042/BSR20120094 Google Scholar
  45. 45.
    Walakovits LA, Moore VL, Bhardwaj N, Gallick GS, Lark MW (1992) Detection of stromelysin and collagenase in synovial fluid from patients with rheumatoid arthritis and posttraumatic knee injury. Arthritis Rheum 35:35–42.  https://doi.org/10.1002/art.1780350106 CrossRefPubMedGoogle Scholar
  46. 46.
    Watson CE, Weissbach N, Kjems L, Ayalasomayajula S, Zhang Y, Chang I, Navab M, Hama S, Hough G, Reddy ST, Soffer D, Rader DJ, Fogelman AM, Schecter A (2011) Treatment of patients with cardiovascular disease with L-4F, an apo-A1 mimetic, did not improve select biomarkers of HDL function. J Lipid Res 52:361–373.  https://doi.org/10.1194/jlr.M011098 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • C. Gebhard
    • 1
  • F. Maafi
    • 1
  • B. E. Stähli
    • 1
  • J. Dang
    • 1
  • W. Nachar
    • 1
  • A. B. de Oliveira Moraes
    • 1
  • A. E. Kernaleguen
    • 1
  • V. Lavoie
    • 1
  • M. Mecteau
    • 1
  • T. Mihalache-Avram
    • 1
  • Y. Shi
    • 1
  • M. Chabot-Blanchet
    • 3
  • D. Busseuil
    • 1
  • D. Rhainds
    • 1
    • 2
  • E. Rhéaume
    • 1
    • 2
  • Jean-Claude Tardif
    • 1
    • 2
  1. 1.Montreal Heart Institute, Université de MontréalMontrealCanada
  2. 2.Department of MedicineUniversité de MontréalMontrealCanada
  3. 3.Montreal Health Innovations Coordinating Centre (MHICC)MontrealCanada

Personalised recommendations