Advertisement

Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases

  • Dongling Liu
  • Xiang Zeng
  • Xiao Li
  • Jawahar L. Mehta
  • Xianwei WangEmail author
Review

Abstract

NLRP3 inflammasome is a key multiprotein signaling platform that tightly controls inflammatory responses and coordinates antimicrobial host defenses by activating caspase-1 for the subsequent maturation of pro-inflammatory cytokines, IL-1β and IL-18, and induces pyroptosis. The assembly and activation of NLRP3 inflammasome are linked to the pathogenesis of several cardiovascular disease risk factors, such as hypertension and diabetes, and their major consequences—myocardial remodeling. The study of the NLRP3 inflammasome in these cardiovascular disease states may uncover important triggers and endogenous modulators of the disease, and lead to new treatment strategies. This review outlines current insights into NLRP3 inflammasome research associated with cardiovascular diseases and discusses the questions that remain in this field.

Keywords

NLRP3 inflammasome IL-1β Caspase-1 Inflammation Cardiovascular diseases 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 81370428), research grant of Xinxiang Medical University (nos. 300/505186 and 300/505233), and the Department of Veterans Affairs, Washington, DC.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Abais JM, Xia M, Zhang Y, Boini KM, Li PL (2015) Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 22:1111–1129.  https://doi.org/10.1089/ars.2014.5994 PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Abbate A, Van Tassell BW, Seropian IM, Toldo S, Robati R, Varma A, Salloum FN, Smithson L, Dinarello CA (2010) Interleukin-1beta modulation using a genetically engineered antibody prevents adverse cardiac remodelling following acute myocardial infarction in the mouse. Eur J Heart Fail 12:319–322.  https://doi.org/10.1093/eurjhf/hfq017 PubMedCrossRefGoogle Scholar
  3. 3.
    Abderrazak A, Syrovets T, Couchie D, El HK, Friguet B, Simmet T, Rouis M (2015) NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol 4:296–307.  https://doi.org/10.1016/j.redox.2015.01.008 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Abderrazak A, Couchie D, Mahmood DF, Elhage R, Vindis C, Laffargue M, Mateo V, Buchele B, Ayala MR, El GM, Syrovets T, Slimane MN, Friguet B, Fulop T, Simmet T, El HK, Rouis M (2015) Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation 131:1061–1070.  https://doi.org/10.1161/CIRCULATIONAHA.114.013730 PubMedCrossRefGoogle Scholar
  5. 5.
    Barry E, Roberts S, Oke J, Vijayaraghavan S, Normansell R, Greenhalgh T (2017) Efficacy and effectiveness of screen and treat policies in prevention of type 2 diabetes: systematic review and meta-analysis of screening tests and interventions. BMJ 356:i6538.  https://doi.org/10.1136/bmj.i6538 PubMedCrossRefGoogle Scholar
  6. 6.
    Bliksoen M, Mariero LH, Torp MK, Baysa A, Ytrehus K, Haugen F, Seljeflot I, Vaage J, Valen G, Stenslokken KO (2016) Extracellular mtDNA activates NF-kappaB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol 111:42.  https://doi.org/10.1007/s00395-016-0553-6 PubMedCrossRefGoogle Scholar
  7. 7.
    Boni-Schnetzler M, Thorne J, Parnaud G, Marselli L, Ehses JA, Kerr-Conte J, Pattou F, Halban PA, Weir GC, Donath MY (2008) Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation. J Clin Endocrinol Metab 93:4065–4074.  https://doi.org/10.1210/jc.2008-0396 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Broz P, Dixit VM (2016) Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol 16:407–420.  https://doi.org/10.1038/nri.2016.58 PubMedCrossRefGoogle Scholar
  9. 9.
    Bruder-Nascimento T, Ferreira NS, Zanotto CZ, Ramalho F, Pequeno IO, Olivon VC, Neves KB, Alves-Lopes R, Campos E, Silva CA, Fazan R, Carlos D, Mestriner FL, Prado D, Pereira FV, Braga T, Luiz JP, Cau SB, Elias PC, Moreira AC, Camara NO, Zamboni DS, Alves-Filho JC, Tostes RC (2016) NLRP3 inflammasome mediates aldosterone-induced vascular damage. Circulation 134:1866–1880.  https://doi.org/10.1161/CIRCULATIONAHA.116.024369 PubMedCrossRefGoogle Scholar
  10. 10.
    Bullon P, Cano-Garcia FJ, Alcocer-Gomez E, Varela-Lopez A, Roman-Malo L, Ruiz-Salmeron RJ, Quiles JL, Navarro-Pando JM, Battino M, Ruiz-Cabello J, Jimenez-Borreguero LJ, Cordero MD (2017) Could NLRP3-inflammasome be a cardiovascular risk biomarker in acute myocardial infarction patients? Antioxid Redox Signal.  https://doi.org/10.1089/ars.2016.6970 PubMedGoogle Scholar
  11. 11.
    Cassel SL, Sutterwala FS (2010) Sterile inflammatory responses mediated by the NLRP3 inflammasome. Eur J Immunol 40:607–611.  https://doi.org/10.1002/eji.200940207 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837.  https://doi.org/10.1038/nri2873 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chen W, Zhao M, Zhao S, Lu Q, Ni L, Zou C, Lu L, Xu X, Guan H, Zheng Z, Qiu Q (2016) Activation of the TXNIP/NLRP3 inflammasome pathway contributes to inflammation in diabetic retinopathy: a novel inhibitory effect of minocycline. Inflamm Res 66:157–166.  https://doi.org/10.1007/s00011-016-1002-6 PubMedCrossRefGoogle Scholar
  14. 14.
    Clark A, Jones LC, de Koning E, Hansen BC, Matthews DR (2001) Decreased insulin secretion in type 2 diabetes: a problem of cellular mass or function? Diabetes 50(Suppl 1):S169–S171PubMedCrossRefGoogle Scholar
  15. 15.
    Cochain C, Zernecke A (2016) Protective and pathogenic roles of CD8+ T cells in atherosclerosis. Basic Res Cardiol 111:71.  https://doi.org/10.1007/s00395-016-0589-7 PubMedCrossRefGoogle Scholar
  16. 16.
    Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582.  https://doi.org/10.1016/s0735-1097(99)00630-0 PubMedCrossRefGoogle Scholar
  17. 17.
    Coll RC, Robertson AA, Chae JJ, Higgins SC, Munoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, Croker DE, Butler MS, Haneklaus M, Sutton CE, Nunez G, Latz E, Kastner DL, Mills KH, Masters SL, Schroder K, Cooper MA, O’Neill LA (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255.  https://doi.org/10.1038/nm.3806 PubMedPubMedCentralGoogle Scholar
  18. 18.
    Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735.  https://doi.org/10.1146/annurev-immunol-031210-101405 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Dinarello CA, van der Meer JW (2013) Treating inflammation by blocking interleukin-1 in humans. Semin Immunol 25:469–484.  https://doi.org/10.1016/j.smim.2013.10.008 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Dinarello CA, Donath MY, Mandrup-Poulsen T (2010) Role of IL-1beta in type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 17:314–321.  https://doi.org/10.1097/MED.0b013e32833bf6dc PubMedGoogle Scholar
  21. 21.
    Ding Z, Liu S, Wang X, Dai Y, Khaidakov M, Deng X, Fan Y, Xiang D, Mehta JL (2014) LOX-1, mtDNA damage, and NLRP3 inflammasome activation in macrophages: implications in atherogenesis. Cardiovasc Res 103:619–628.  https://doi.org/10.1093/cvr/cvu114 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11:98–107.  https://doi.org/10.1038/nri2925 PubMedCrossRefGoogle Scholar
  23. 23.
    Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nunez G, Schnurr M, Espevik T, Lien E, Fitzgerald KA, Rock KL, Moore KJ, Wright SD, Hornung V, Latz E (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464:1357–1361.  https://doi.org/10.1038/nature08938 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Elliott EI, Sutterwala FS (2015) Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 265:35–52.  https://doi.org/10.1111/imr.12286 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Feng H, Gu J, Gou F, Huang W, Gao C, Chen G, Long Y, Zhou X, Yang M, Liu S, Lu S, Luo Q, Xu Y (2016) High glucose and lipopolysaccharide prime NLRP3 inflammasome via ROS/TXNIP pathway in mesangial cells. J Diabetes Res 2016:6973175.  https://doi.org/10.1155/2016/6973175 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Franchi L, Nunez G (2012) Immunology. Orchestrating inflammasomes. Science 337:1299–1300.  https://doi.org/10.1126/science.1229010 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11:255–265.  https://doi.org/10.1038/nrcardio.2014.28 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47.  https://doi.org/10.1016/S0008-6363(01)00434-5 PubMedCrossRefGoogle Scholar
  29. 29.
    Freigang S, Ampenberger F, Spohn G, Heer S, Shamshiev AT, Kisielow J, Hersberger M, Yamamoto M, Bachmann MF, Kopf M (2011) Nrf2 is essential for cholesterol crystal-induced inflammasome activation and exacerbation of atherosclerosis. Eur J Immunol 41:2040–2051.  https://doi.org/10.1002/eji.201041316 PubMedCrossRefGoogle Scholar
  30. 30.
    Fujita T (2014) Mechanism of salt-sensitive hypertension: focus on adrenal and sympathetic nervous systems. J Am Soc Nephrol 25:1148–1155.  https://doi.org/10.1681/ASN.2013121258 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gabay C, Lamacchia C, Palmer G (2010) IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol 6:232–241.  https://doi.org/10.1038/nrrheum.2010.4 PubMedCrossRefGoogle Scholar
  32. 32.
    Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol 27:165–197.  https://doi.org/10.1146/annurev.immunol.021908.132620 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gan W, Ren J, Li T, Lv S, Chenghe L, Liu Z, Yang M (2017) The SGK1 inhibitor EMD638683, prevents Angiotensin II-induced cardiac inflammation and fibrosis by blocking NLRP3 inflammasome activation. Biochim Biophys Acta 1864:1–10.  https://doi.org/10.1016/j.bbadis.2017.10.001 PubMedCrossRefGoogle Scholar
  34. 34.
    Gjesdal O, Bluemke DA, Lima JA (2011) Cardiac remodeling at the population level—risk factors, screening, and outcomes. Nat Rev Cardiol 8:673–685.  https://doi.org/10.1038/nrcardio.2011.154 PubMedCrossRefGoogle Scholar
  35. 35.
    Gomperts E, Belcher JD, Otterbein LE, Coates TD, Wood J, Skolnick BE, Levy H, Vercellotti GM (2017) The role of carbon monoxide and heme oxygenase in the prevention of sickle cell disease vaso-occlusive crises. Am J Hematol 92:569–582.  https://doi.org/10.1002/ajh.24750 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nat Immunol 12:204–212.  https://doi.org/10.1038/ni.2001 PubMedCrossRefGoogle Scholar
  37. 37.
    Heid ME, Keyel PA, Kamga C, Shiva S, Watkins SC, Salter RD (2013) Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J Immunol 191:5230–5238.  https://doi.org/10.4049/jimmunol.1301490 PubMedCrossRefGoogle Scholar
  38. 38.
    Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943.  https://doi.org/10.1016/S0140-6736(14)60107-0 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H (2017) NLRP3 inflammasome: its regulation and involvement in atherosclerosis. J Cell Physiol.  https://doi.org/10.1002/jcp.25930 Google Scholar
  40. 40.
    Hui ST, Andres AM, Miller AK, Spann NJ, Potter DW, Post NM, Chen AZ, Sachithanantham S, Jung DY, Kim JK, Davis RA (2008) Txnip balances metabolic and growth signaling via PTEN disulfide reduction. Proc Natl Acad Sci USA 105:3921–3926.  https://doi.org/10.1073/pnas.0800293105 PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Inoue Y, Yasuda Y, Takahashi M (2013) Role of the inflammasome in inflammatory responses and subsequent injury after hepatic ischemia-reperfusion injury. Hepatology 58:2212.  https://doi.org/10.1002/hep.26480 PubMedCrossRefGoogle Scholar
  42. 42.
    Jahng JW, Song E, Sweeney G (2016) Crosstalk between the heart and peripheral organs in heart failure. Exp Mol Med 48:e217.  https://doi.org/10.1038/emm.2016.20 PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jung M, Ma Y, Iyer RP, DeLeon-Pennell KY, Yabluchanskiy A, Garrett MR, Lindsey ML (2017) IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res Cardiol 112:33.  https://doi.org/10.1007/s00395-017-0622-5 PubMedCrossRefGoogle Scholar
  44. 44.
    Kamari Y, Shaish A, Shemesh S, Vax E, Grosskopf I, Dotan S, White M, Voronov E, Dinarello CA, Apte RN, Harats D (2011) Reduced atherosclerosis and inflammatory cytokines in apolipoprotein-E-deficient mice lacking bone marrow-derived interleukin-1alpha. Biochem Biophys Res Commun 405:197–203.  https://doi.org/10.1016/j.bbrc.2011.01.008 PubMedCrossRefGoogle Scholar
  45. 45.
    Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, Hongo M, Noda T, Nakayama J, Sagara J, Taniguchi S, Ikeda U (2011) Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123:594–604.  https://doi.org/10.1161/CIRCULATIONAHA.110.982777 PubMedCrossRefGoogle Scholar
  46. 46.
    Kim Y, Wang W, Okla M, Kang I, Moreau R, Chung S (2016) Suppression of NLRP3 inflammasome by gamma-tocotrienol ameliorates type 2 diabetes. J Lipid Res 57:66–76.  https://doi.org/10.1194/jlr.M062828 PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kingery JR, Hamid T, Lewis RK, Ismahil MA, Bansal SS, Rokosh G, Townes TM, Ildstad ST, Jones SP, Prabhu SD (2017) Leukocyte iNOS is required for inflammation and pathological remodeling in ischemic heart failure. Basic Res Cardiol 112:19.  https://doi.org/10.1007/s00395-017-0609-2 PubMedCrossRefGoogle Scholar
  48. 48.
    Koenen TB, Stienstra R, van Tits LJ, de Graaf J, Stalenhoef AF, Joosten LA, Tack CJ, Netea MG (2011) Hyperglycemia activates caspase-1 and TXNIP-mediated IL-1beta transcription in human adipose tissue. Diabetes 60:517–524.  https://doi.org/10.2337/db10-0266 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Krishnan SM, Sobey CG, Latz E, Mansell A, Drummond GR (2014) IL-1beta and IL-18: inflammatory markers or mediators of hypertension? Br J Pharmacol 171:5589–5602.  https://doi.org/10.1111/bph.12876 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Lamkanfi M, Dixit VM (2014) Mechanisms and functions of inflammasomes. Cell 157:1013–1022.  https://doi.org/10.1016/j.cell.2014.04.007 PubMedCrossRefGoogle Scholar
  51. 51.
    Larsen CM, Faulenbach M, Vaag A, Volund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526.  https://doi.org/10.1056/NEJMoa065213 PubMedCrossRefGoogle Scholar
  52. 52.
    Lee BC, Lee J (2014) Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta 1842:446–462.  https://doi.org/10.1016/j.bbadis.2013.05.017 PubMedCrossRefGoogle Scholar
  53. 53.
    Li L, Wang X, Chen W, Qi H, Jiang DS, Huang L, Huang F, Wang L, Li H, Chen X (2015) Regulatory role of CARD3 in left ventricular remodelling and dysfunction after myocardial infarction. Basic Res Cardiol 110:56.  https://doi.org/10.1007/s00395-015-0515-4 PubMedCrossRefGoogle Scholar
  54. 54.
    Lin L, Phillips WE, Manning RD (2009) Intrarenal Angiotensin ii is associated with inflammation, renal damage and dysfunction in dahl salt-sensitive hypertension. J Am Soc Hypertens 3:306–314.  https://doi.org/10.1016/j.jash.2009.08.002 PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Liu SS, Ding Y, Lou JQ (2014) NLRP3, a potential therapeutic target for type 2 diabetes? Cardiovasc Drugs Ther 28:391–392.  https://doi.org/10.1007/s10557-014-6531-z PubMedCrossRefGoogle Scholar
  56. 56.
    Liu Y, Lian K, Zhang L, Wang R, Yi F, Gao C, Xin C, Zhu D, Li Y, Yan W, Xiong L, Gao E, Wang H, Tao L (2014) TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Res Cardiol 109:415.  https://doi.org/10.1007/s00395-014-0415-z PubMedCrossRefGoogle Scholar
  57. 57.
    Lu J, Mitra S, Wang X, Khaidakov M, Mehta JL (2011) Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in atherogenesis and tumorigenesis. Antioxid Redox Signal 15:2301–2333.  https://doi.org/10.1089/ars.2010.3792 PubMedCrossRefGoogle Scholar
  58. 58.
    Lu X, Kakkar V (2014) Inflammasome and atherogenesis. Curr Pharm Des 20:108–124.  https://doi.org/10.2174/13816128113199990586 PubMedCrossRefGoogle Scholar
  59. 59.
    Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, Zhang M, Zhang Y, An F (2014) NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One 9:e104771.  https://doi.org/10.1371/journal.pone.0104771 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Luzardo L, Noboa O, Boggia J (2015) Mechanisms of salt-sensitive hypertension. Curr Hypertens Rev 11:14–21.  https://doi.org/10.2174/1573402111666150530204136 PubMedCrossRefGoogle Scholar
  61. 61.
    Maedler K, Dharmadhikari G, Schumann DM, Storling J (2009) Interleukin-1 beta targeted therapy for type 2 diabetes. Expert Opin Biol Ther 9:1177–1188.  https://doi.org/10.1517/14712590903136688 PubMedCrossRefGoogle Scholar
  62. 62.
    Maedler K, Schumann DM, Sauter N, Ellingsgaard H, Bosco D, Baertschiger R, Iwakura Y, Oberholzer J, Wollheim CB, Gauthier BR, Donath MY (2006) Low concentration of interleukin-1beta induces FLICE-inhibitory protein-mediated beta-cell proliferation in human pancreatic islets. Diabetes 55:2713–2722.  https://doi.org/10.2337/db05-1430 PubMedCrossRefGoogle Scholar
  63. 63.
    Mao K, Chen S, Chen M, Ma Y, Wang Y, Huang B, He Z, Zeng Y, Hu Y, Sun S, Li J, Wu X, Wang X, Strober W, Chen C, Meng G, Sun B (2013) Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Res 23:201–212.  https://doi.org/10.1038/cr.2013.6 PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Marchetti C, Chojnacki J, Toldo S, Mezzaroma E, Tranchida N, Rose SW, Federici M, Van Tassell BW, Zhang S, Abbate A (2014) A novel pharmacologic inhibitor of the NLRP3 inflammasome limits myocardial injury after ischemia-reperfusion in the mouse. J Cardiovasc Pharmacol 63:316–322.  https://doi.org/10.1097/FJC.0000000000000053 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Menu P, Vince JE (2011) The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol 166:1–15.  https://doi.org/10.1111/j.1365-2249.2011.04440.x PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Menu P, Pellegrin M, Aubert JF, Bouzourene K, Tardivel A, Mazzolai L, Tschopp J (2011) Atherosclerosis in ApoE-deficient mice progresses independently of the NLRP3 inflammasome. Cell Death Dis 2:e137.  https://doi.org/10.1038/cddis.2011.18 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF, Abbate A (2011) The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA 108:19725–19730.  https://doi.org/10.1073/pnas.1108586108 PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Nadruz W (2015) Myocardial remodeling in hypertension. J Hum Hypertens 29:1–6.  https://doi.org/10.1038/jhh.2014.36 PubMedCrossRefGoogle Scholar
  69. 69.
    Paramel VG, Folkersen L, Strawbridge RJ, Halvorsen B, Yndestad A, Ranheim T, Krohg-Sorensen K, Skjelland M, Espevik T, Aukrust P, Lengquist M, Hedin U, Jansson JH, Fransen K, Hansson GK, Eriksson P, Sirsjo A (2016) NLRP3 inflammasome expression and activation in human atherosclerosis. J Am Heart Assoc.  https://doi.org/10.1161/JAHA.115.003031 Google Scholar
  70. 70.
    Parikh H, Carlsson E, Chutkow WA, Johansson LE, Storgaard H, Poulsen P, Saxena R, Ladd C, Schulze PC, Mazzini MJ, Jensen CB, Krook A, Bjornholm M, Tornqvist H, Zierath JR, Ridderstrale M, Altshuler D, Lee RT, Vaag A, Groop LC, Mootha VK (2007) TXNIP regulates peripheral glucose metabolism in humans. PLoS Med 4:e158.  https://doi.org/10.1371/journal.pmed.0040158 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Peng K, Liu L, Wei D, Lv Y, Wang G, Xiong W, Wang X, Altaf A, Wang L, He D, Wang H, Qu P (2015) P2X7R is involved in the progression of atherosclerosis by promoting NLRP3 inflammasome activation. Int J Mol Med 35:1179–1188.  https://doi.org/10.3892/ijmm.2015.2129 PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Perrone L, Devi TS, Hosoya KI, Terasaki T, Singh LP (2010) Inhibition of TXNIP expression in vivo blocks early pathologies of diabetic retinopathy. Cell Death Dis 1:e65.  https://doi.org/10.1038/cddis.2010.42 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pothineni N, Karathanasis SK, Ding Z, Arulandu A, Varughese KI, Mehta JL (2017) LOX-1 in atherosclerosis and myocardial ischemia: biology, genetics, and modulation. J Am Coll Cardiol 69:2759–2768.  https://doi.org/10.1016/j.jacc.2017.04.010 PubMedCrossRefGoogle Scholar
  74. 74.
    Poulter NR, Prabhakaran D, Caulfield M (2015) Hypertension. Lancet 386:801–812.  https://doi.org/10.1016/S0140-6736(14)61468-9 PubMedCrossRefGoogle Scholar
  75. 75.
    Qi J, Yu XJ, Shi XL, Gao HL, Yi QY, Tan H, Fan XY, Zhang Y, Song XA, Cui W, Liu JJ, Kang YM (2016) NF-kappaB blockade in hypothalamic paraventricular nucleus inhibits high-salt-induced hypertension through NLRP3 and caspase-1. Cardiovasc Toxicol 16:345–354.  https://doi.org/10.1007/s12012-015-9344-9 PubMedCrossRefGoogle Scholar
  76. 76.
    Qi J, Zhao XF, Yu XJ, Yi QY, Shi XL, Tan H, Fan XY, Gao HL, Yue LY, Feng ZP, Kang YM (2016) Targeting interleukin-1 beta to suppress sympathoexcitation in hypothalamic paraventricular nucleus in Dahl salt-sensitive hypertensive rats. Cardiovasc Toxicol 16:298–306.  https://doi.org/10.1007/s12012-015-9338-7 PubMedCrossRefGoogle Scholar
  77. 77.
    Rajamaki K, Lappalainen J, Oorni K, Valimaki E, Matikainen S, Kovanen PT, Eklund KK (2010) Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS One 5:e11765.  https://doi.org/10.1371/journal.pone.0011765 PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Rienks M, Carai P, Bitsch N, Schellings M, Vanhaverbeke M, Verjans J, Cuijpers I, Heymans S, Papageorgiou A (2017) Sema3A promotes the resolution of cardiac inflammation after myocardial infarction. Basic Res Cardiol 112:42.  https://doi.org/10.1007/s00395-017-0630-5 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Rust P, Ekmekcioglu C (2017) Impact of salt intake on the pathogenesis and treatment of hypertension. Adv Exp Med Biol 956:61–84.  https://doi.org/10.1007/5584_2016_147 PubMedCrossRefGoogle Scholar
  80. 80.
    Sandanger O, Ranheim T, Vinge LE, Bliksoen M, Alfsnes K, Finsen AV, Dahl CP, Askevold ET, Florholmen G, Christensen G, Fitzgerald KA, Lien E, Valen G, Espevik T, Aukrust P, Yndestad A (2013) The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res 99:164–174.  https://doi.org/10.1093/cvr/cvt091 PubMedCrossRefGoogle Scholar
  81. 81.
    Savoye C, Equine O, Tricot O, Nugue O, Segrestin B, Sautiere K, Elkohen M, Pretorian EM, Taghipour K, Philias A, Aumegeat V, Decoulx E, Ennezat PV, Bauters C (2006) Left ventricular remodeling after anterior wall acute myocardial infarction in modern clinical practice (from the REmodelage VEntriculaire [REVE] study group). Am J Cardiol 98:1144–1149.  https://doi.org/10.1016/j.amjcard.2006.06.011 PubMedCrossRefGoogle Scholar
  82. 82.
    Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327:296–300.  https://doi.org/10.1126/science.1184003 PubMedCrossRefGoogle Scholar
  83. 83.
    Sharma AA, Jen R, Kan B, Sharma A, Marchant E, Tang A, Gadawski I, Senger C, Skoll A, Turvey SE, Sly LM, Cote HC, Lavoie PM (2015) Impaired NLRP3 inflammasome activity during fetal development regulates IL-1beta production in human monocytes. Eur J Immunol 45:238–249.  https://doi.org/10.1002/eji.201444707 PubMedCrossRefGoogle Scholar
  84. 84.
    Shi Y, Hu FB (2014) The global implications of diabetes and cancer. Lancet 383:1947–1948.  https://doi.org/10.1016/S0140-6736(14)60886-2 PubMedCrossRefGoogle Scholar
  85. 85.
    Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, Rentsendorj A, Vargas M, Guerrero C, Wang Y, Fitzgerald KA, Underhill DM, Town T, Arditi M (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36:401–414.  https://doi.org/10.1016/j.immuni.2012.01.009 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Sidhu RK (2016) Association between acute myocardial infarction and periodontitis: a review of the literature. J Int Acad Periodontol 18:23–33PubMedGoogle Scholar
  87. 87.
    Stanley TL, Zanni MV, Johnsen S, Rasheed S, Makimura H, Lee H, Khor VK, Ahima RS, Grinspoon SK (2011) TNF-alpha antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J Clin Endocrinol Metab 96:E146–E150.  https://doi.org/10.1210/jc.2010-1170 PubMedCrossRefGoogle Scholar
  88. 88.
    Stienstra R, Joosten LA, Koenen T, van Tits B, van Diepen JA, van den Berg SA, Rensen PC, Voshol PJ, Fantuzzi G, Hijmans A, Kersten S, Muller M, van den Berg WB, van Rooijen N, Wabitsch M, Kullberg BJ, van der Meer JW, Kanneganti T, Tack CJ, Netea MG (2010) The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab 12:593–605.  https://doi.org/10.1016/j.cmet.2010.11.011 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Stutz A, Kolbe CC, Stahl R, Horvath GL, Franklin BS, van Ray O, Brinkschulte R, Geyer M, Meissner F, Latz E (2017) NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J Exp Med 214:1725–1736.  https://doi.org/10.1084/jem.20160933 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Su Q, Qin DN, Wang FX, Ren J, Li HB, Zhang M, Yang Q, Miao YW, Yu XJ, Qi J, Zhu Z, Zhu GQ, Kang YM (2014) Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system and proinflammatory cytokines in hypertension. Toxicol Appl Pharmacol 276:115–120.  https://doi.org/10.1016/j.taap.2014.02.002 PubMedCrossRefGoogle Scholar
  91. 91.
    Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation 101:2981–2988.  https://doi.org/10.1161/01.CIR.101.25.2981 PubMedCrossRefGoogle Scholar
  92. 92.
    Takahashi M (2014) NLRP3 inflammasome as a novel player in myocardial infarction. Int Heart J 55:101–105.  https://doi.org/10.1536/ihj.13-388 PubMedCrossRefGoogle Scholar
  93. 93.
    Takahashi M (2010) Role of the SDF-1/CXCR4 system in myocardial infarction. Circ J 74:418–423.  https://doi.org/10.1253/circj.cj-09-1021 PubMedCrossRefGoogle Scholar
  94. 94.
    Takahashi M (2011) Role of the inflammasome in myocardial infarction. Trends Cardiovasc Med 21:37–41.  https://doi.org/10.1016/j.tcm.2012.02.002 PubMedCrossRefGoogle Scholar
  95. 95.
    Toldo S, Mezzaroma E, Mauro AG, Salloum F, Van Tassell BW, Abbate A (2015) The inflammasome in myocardial injury and cardiac remodeling. Antioxid Redox Signal 22:1146–1161.  https://doi.org/10.1089/ars.2014.5989 PubMedCrossRefGoogle Scholar
  96. 96.
    Tomczyk M, Kraszewska I, Szade K, Bukowska-Strakova K, Meloni M, Jozkowicz A, Dulak J, Jazwa A (2017) Splenic Ly6Chi monocytes contribute to adverse late post-ischemic left ventricular remodeling in heme oxygenase-1 deficient mice. Basic Res Cardiol 112:39.  https://doi.org/10.1007/s00395-017-0629-y PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Tumurkhuu G, Shimada K, Dagvadorj J, Crother TR, Zhang W, Luthringer D, Gottlieb RA, Chen S, Arditi M (2016) Ogg1-dependent DNA repair regulates NLRP3 inflammasome and prevents atherosclerosis. Circ Res 119:e76–e90.  https://doi.org/10.1161/CIRCRESAHA.116.308362 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    van Greevenbroek MM, Vermeulen VM, Feskens EJ, Evelo CT, Kruijshoop M, Hoebee B, van der Kallen CJ, de Bruin TW (2007) Genetic variation in thioredoxin interacting protein (TXNIP) is associated with hypertriglyceridaemia and blood pressure in diabetes mellitus. Diabet Med 24:498–504.  https://doi.org/10.1111/j.1464-5491.2007.02109.x PubMedCrossRefGoogle Scholar
  99. 99.
    van Hout GP, Bosch L, Ellenbroek GH, de Haan JJ, van Solinge WW, Cooper MA, Arslan F, de Jager SC, Robertson AA, Pasterkamp G, Hoefer IE (2016) The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J.  https://doi.org/10.1093/eurheartj/ehw247 Google Scholar
  100. 100.
    van Hout GP, Arslan F, Pasterkamp G, Hoefer IE (2016) Targeting danger-associated molecular patterns after myocardial infarction. Expert Opin Ther Targets 20:223–239.  https://doi.org/10.1517/14728222.2016.1088005 PubMedCrossRefGoogle Scholar
  101. 101.
    Van Tassell BW, Toldo S, Mezzaroma E, Abbate A (2013) Targeting interleukin-1 in heart disease. Circulation 128:1910–1923.  https://doi.org/10.1161/CIRCULATIONAHA.113.003199 PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Vanaja SK, Rathinam VA, Fitzgerald KA (2015) Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25:308–315.  https://doi.org/10.1016/j.tcb.2014.12.009 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17:179–188.  https://doi.org/10.1038/nm.2279 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Wada J, Makino H (2016) Innate immunity in diabetes and diabetic nephropathy. Nat Rev Nephrol 12:13–26.  https://doi.org/10.1038/nrneph.2015.175 PubMedCrossRefGoogle Scholar
  105. 105.
    Wang X, Phillips MI, Mehta JL (2011) LOX-1 and angiotensin receptors, and their interplay. Cardiovasc Drugs Ther 25:401–417.  https://doi.org/10.1007/s10557-011-6331-7 PubMedCrossRefGoogle Scholar
  106. 106.
    Wang Y, Wu Y, Chen J, Zhao S, Li H (2013) Pirfenidone attenuates cardiac fibrosis in a mouse model of TAC-induced left ventricular remodeling by suppressing NLRP3 inflammasome formation. Cardiology 126:1–11.  https://doi.org/10.1159/000351179 PubMedCrossRefGoogle Scholar
  107. 107.
    Westman PC, Lipinski MJ, Luger D, Waksman R, Bonow RO, Wu E, Epstein SE (2016) Inflammation as a driver of adverse left ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol 67:2050–2060.  https://doi.org/10.1016/j.jacc.2016.01.073 PubMedCrossRefGoogle Scholar
  108. 108.
    WHO (2017) World Health Organization diabetes fact sheet. http://www.who.int/mediacentre/factsheets/fs312/en/. Accessed July 2017
  109. 109.
    WHO (2016) World Health Organization, global report on diabetes. Geneva. http://who.int/diabetes/global-report/en/. Accessed April 2016. ISBN: 978 92 4 156525 7 (NLM classification: WK 810)
  110. 110.
    Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053.  https://doi.org/10.2337/diacare.27.10.2568 PubMedCrossRefGoogle Scholar
  111. 111.
    Yajima N, Takahashi M, Morimoto H, Shiba Y, Takahashi Y, Masumoto J, Ise H, Sagara J, Nakayama J, Taniguchi S, Ikeda U (2008) Critical role of bone marrow apoptosis-associated speck-like protein, an inflammasome adaptor molecule, in neointimal formation after vascular injury in mice. Circulation 117:3079–3087.  https://doi.org/10.1161/CIRCULATIONAHA.107.746453 PubMedCrossRefGoogle Scholar
  112. 112.
    Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135.  https://doi.org/10.1056/NEJMra071667 PubMedCrossRefGoogle Scholar
  113. 113.
    Youm YH, Adijiang A, Vandanmagsar B, Burk D, Ravussin A, Dixit VD (2011) Elimination of the NLRP3-ASC inflammasome protects against chronic obesity-induced pancreatic damage. Endocrinology 152:4039–4045.  https://doi.org/10.1210/en.2011-1326 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Yu XJ, Zhang DM, Jia LL, Qi J, Song XA, Tan H, Cui W, Chen W, Zhu GQ, Qin DN, Kang YM (2015) Inhibition of NF-kappaB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress. Toxicol Appl Pharmacol 284:315–322.  https://doi.org/10.1016/j.taap.2015.02.023 PubMedCrossRefGoogle Scholar
  115. 115.
    Zhang W, Tao A, Lan T, Cepinskas G, Kao R, Martin CM, Rui T (2017) Carbon monoxide releasing molecule-3 improves myocardial function in mice with sepsis by inhibiting NLRP3 inflammasome activation in cardiac fibroblasts. Basic Res Cardiol 112:16.  https://doi.org/10.1007/s00395-017-0603-8 PubMedCrossRefGoogle Scholar
  116. 116.
    Zheng F, Xing S, Gong Z, Mu W, Xing Q (2014) Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediat Inflamm 2014:507208.  https://doi.org/10.1155/2014/507208 Google Scholar
  117. 117.
    Zheng F, Xing S, Gong Z, Xing Q (2013) NLRP3 inflammasomes show high expression in aorta of patients with atherosclerosis. Heart Lung Circ 22:746–750.  https://doi.org/10.1016/j.hlc.2013.01.012 PubMedCrossRefGoogle Scholar
  118. 118.
    Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225.  https://doi.org/10.1038/nature09663 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityXinxiangChina
  2. 2.Department of Epidemiology and Health Statistics, School of Public HealthXinxiang Medical UniversityXinxiangChina
  3. 3.Central Arkansas Veterans Healthcare System and the Division of CardiologyUniversity of Arkansas for Medical SciencesLittle RockUSA

Personalised recommendations