Advertisement

Basic Research in Cardiology

, 112:58 | Cite as

Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation

  • Shang-Hung Chang
  • Yung-Hsin Yeh
  • Jia-Lin Lee
  • Yu-Juei Hsu
  • Chi-Tai Kuo
  • Wei-Jan ChenEmail author
Original Contribution

Abstract

Atrial fibrillation (AF) is associated with atrial fibrosis. Inhibition of atrial fibrosis might be a plausible approach for AF prevention and therapy. This study is designed to evaluate the potential role of CD44, a membrane receptor known to regulate fibrosis, and its related signaling in the pathogenesis of atrial fibrosis and AF. Treatment of cultured rat atrial fibroblasts with transforming growth factor-β (TGF-β, a key mediator of atrial fibrosis) led to a higher expression of hyaluronan (HA), CD44, STAT3, and collagen (a principal marker of fibrosis) than that of ventricular fibroblasts. In vivo, TGF-β transgenic mice and AF patients exhibited a greater expression of HA, CD44, STAT3, and collagen in their atria than wild-type mice and sinus rhythm subjects, respectively. Treating TGF-β transgenic mice with an anti-CD44 blocking antibody resulted in a lower expression of STAT3 and collagen in their atria than those with control IgG antibody. Programmed stimulation triggered less AF episodes in TGF-β transgenic mice treated with anti-CD44 blocking antibody than in those with control IgG. Blocking CD44 signaling with anti-CD44 antibody and mutated CD44 plasmids attenuated TGF-β-induced STAT3 activation and collagen expression in cultured atrial fibroblasts. Deletion and mutational analysis of the collagen promoter along with chromatin immunoprecipitation demonstrated that STAT3 served as a vital transcription factor in collagen expression. TGF-β-mediated HA/CD44/STAT3 pathway plays a crucial role in the development of atrial fibrosis and AF. Blocking CD44-dependent signaling may be a feasible way for AF management.

Keywords

Atrial fibrillation Atrial fibrosis CD44 Hyaluronan Transforming growth factor-β 

Notes

Acknowledgements

We thank Mr. Chih-Chun Chen for his technical assistance in confocal microscopy.

Compliance with ethical standards

Funding

This work was supported by grants from Chang Gung Research Grant Foundation (CMRPG 3B1691-3, 3D1331-3, 3D1631-3, 3F0991-3, and 3F2281) and from Ministry of Science and Technology, Taiwan (102-2628-B-182-011-MY3, 104-2314-B-182A-135-MY2, and 104-2314-B-182-052-MY3).

Conflict of interest

US patent is issued for the method in treating and/or preventing AF patients with a pharmaceutical composition containing an anti-CD44 neutralizing antibody or an antigen binding portion.

Supplementary material

395_2017_647_MOESM1_ESM.pdf (853 kb)
Supplementary material 1 (PDF 852 kb)

References

  1. 1.
    Bourguignon LY, Singleton PA, Zhu H, Zhou B (2002) Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J Biol Chem 277:39703–39712. doi: 10.1074/jbc.M204320200 CrossRefPubMedGoogle Scholar
  2. 2.
    Burstein B, Libby E, Calderone A, Nattel S (2008) Differential behaviors of atrial versus ventricular fibroblasts. A potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation 117:1630–1641. doi: 10.1161/CIRCULATIONAHA.107.748053 CrossRefPubMedGoogle Scholar
  3. 3.
    Burstein B, Nattel S (2008) Atrial fibrosis: mechanism and clinical relevance in atrial fibrillation. J Am Coll Cardiol 51:802–809. doi: 10.1016/j.jacc.2007.09.064 CrossRefPubMedGoogle Scholar
  4. 4.
    Chen Y, Surinkaew S, Naud P, Qi XY, Gillis MA, Shi YF, Tardif JC, Dobrev D, Nattel S (2017) JAK-STAT signalling and the atrial fibrillation promoting fibrotic substrate. Cardiovasc Res 113:310–320. doi: 10.1093/cvr/cvx004 CrossRefGoogle Scholar
  5. 5.
    Hanna N, Cardin S, Leung TK, Nattel S (2004) Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc Res 63:236–244. doi: 10.1016/j.cardiores.2004.03.026 CrossRefPubMedGoogle Scholar
  6. 6.
    Hoffmann S, Clauss S, Berger IM, Weiß B, Montalbano A, Röth R, Bucher M, Klier I, Wakili R, Seitz H, Schulze-Bahr E, Katus HA, Flachsbart F, Nebel A, Guenther SP, Bagaev E, Rottbauer W, Kääb S, Just S, Rappold GA (2016) Coding and non-coding variants in the SHOX2 gene in patients with early-onset atrial fibrillation. Basic Res Cardiol 111:36. doi: 10.1007/s00395-016-0557-2 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hong CS, Cho MC, Kwak YG, Song CH, Lee YH, Lim JS, Kwon YK, Chae SW, Kim DH (2002) Cardiac remodeling and atrial fibrillation in transgenic mice overexpressing junction. FASEB J 16:1310–1312. doi: 10.1096/fj.01-0908fje PubMedGoogle Scholar
  8. 8.
    Huebener P, Abou-Khamis T, Zymek P, Bujak M, Ying X, Chatila K, Haudek S, Thakker G, Frangogiannis NG (2008) CD44 is critically involved in infarct healing by regulating the inflammatory and fibrotic response. J Immunol 180:2625–2633. doi: 10.4049/jimmunol.180.4.2625 CrossRefPubMedGoogle Scholar
  9. 9.
    Ito T, Williams JD, Fraser D, Phillips AO (2004) Hyaluronan attenuates transforming growth factor-beta1-mediated signaling in renal proximal tubular epithelial cells. Am J Pathol 164:1979–1988. doi: 10.1016/S0002-9440(10)63758-3 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ito T, Williams JD, Fraser DJ, Phillips AO (2004) Hyaluronan regulates transforming growth factor-beta1 receptor compartmentalization. J Biol Chem 279:25326–25332. doi: 10.1074/jbc.M403135200 CrossRefPubMedGoogle Scholar
  11. 11.
    Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12:1167–1174. doi: 10.1038/nm1483 CrossRefPubMedGoogle Scholar
  12. 12.
    Kers J, Xu-Dubois YC, Rondeau E, Claessen N, Idu MM, Roelofs JJ, Bemelman FJ, ten Berge IJ, Florquin S (2010) Intragraft tubular vimentin and CD44 expression correlate with long-term renal allograft function and interstitial fibrosis and tubular atrophy. Transplantation 90:502–509. doi: 10.1097/TP.0b013e3181e86b42 CrossRefPubMedGoogle Scholar
  13. 13.
    Khurana SS, Riehl TE, Moore BD, Fassan M, Rugge M, Romero-Gallo J, Noto J, Peek RM Jr, Stenson WF, Mills JC (2013) The hyaluronic acid receptor CD44 coordinates normal and metaplastic gastric epithelial progenitor cell proliferation. J Biol Chem 288:16085–16097. doi: 10.1074/jbc.M112.445551 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Krause DS, Lazarides K, von Andrian UH, Van Etten RA (2006) Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 12:1175–1180. doi: 10.1038/nm1489 CrossRefPubMedGoogle Scholar
  15. 15.
    Lee JL, Wang MJ, Chen JY (2009) Acetylation and activation of STAT3 mediated nuclear translocation of CD44. J Cell Biol 185:949–957. doi: 10.1083/jcb.200812060 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Levy DE, Darnell JE Jr (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3:651–662. doi: 10.1038/nrm909 CrossRefPubMedGoogle Scholar
  17. 17.
    Li J, Gorski DJ, Anemaet W, Velasco J, Takeuchi J, Sandy JD, Plaas A (2012) Hyaluronan injection in murine osteoarthritis prevents TGFbeta 1-induced synovial neovascularization and fibrosis and maintains articular cartilage integrity by a CD44-dependent mechanism. Arthr Res Ther 14:R151. doi: 10.1186/ar3887 CrossRefGoogle Scholar
  18. 18.
    Li Y, Jiang D, Liang J, Meltzer EB, Gray A, Miura R, Wogensen L, Yamaguchi Y, Noble PW (2011) Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J Exp Med 208:1459–1471. doi: 10.1084/jem.20102510 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Meran S, Luo DD, Simpson R, Martin J, Wells A, Steadman R, Phillips AO (2011) Hyaluronan facilitates transforming growth factor-β1-dependent proliferation via CD44 and epidermal growth factor receptor interaction. J Biol Chem 286:17618–17630. doi: 10.1074/jbc.M111.226563 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Meran S, Thomas DW, Stephens P, Enoch S, Martin J, Steadman R, Phillips AO (2008) Hyaluronan facilitates transforming growth factor-beta1-mediated fibroblast proliferation. J Biol Chem 283:6530–6545. doi: 10.1074/jbc.M704819200 CrossRefPubMedGoogle Scholar
  21. 21.
    Mikecz K, Brennan FR, Kim JH, Glant TT (1995) Anti-CD44 treatment abrogates tissue oedema and leukocyte infiltration in murine arthritis. Nat Med 1:558–563CrossRefPubMedGoogle Scholar
  22. 22.
    Misra S, Hascalll VC, Markwald RR, Ghatak S (2015) Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol 6:201. doi: 10.3389/fimmu.2015.00201 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Müller J, Gorressen S, Grandoch M, Feldmann K, Kretschmer I, Lehr S, Ding Z, Schmitt JP, Schrader J, Garbers C, Heusch G, Kelm M, Scheller J, Fischer JW (2014) Interleukin-6-dependent phenotypic modulation of cardiac fibroblasts after acute myocardial infarction. Basic Res Cardiol 109:440. doi: 10.1007/s00395-014-0440-y CrossRefPubMedGoogle Scholar
  24. 24.
    Nakajima H, Nakajima HO, Salcher O, Dittie AS, Dembowsky K, Jing S, Field LJ (2000) Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-beta(1) transgene in the heart. Circ Res 86:571–579. doi: 10.1161/01.RES.86.5.571 CrossRefPubMedGoogle Scholar
  25. 25.
    Nataatmadja M, West J, West M (2006) Overexpression of transforming growth factor-beta is associated with increased hyaluronan content and impairment of repair in Marfan syndrome aortic aneurysm. Circulation 114(Suppl I):I371–I377. doi: 10.1161/CIRCULATIONAHA.105.000927 PubMedGoogle Scholar
  26. 26.
    Ponta H, Sherman L, Herrlich PA (2003) CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 4:33–45. doi: 10.1038/nrm1004 CrossRefPubMedGoogle Scholar
  27. 27.
    Rameshwar P, Chang VT, Gascón P (1996) Implication of CD44 in adhesion-mediated overproduction of TGF-beta and IL-1 in monocytes from patients with bone marrow fibrosis. Br J Haematol 93:22–29. doi: 10.1046/j.1365-2141.1996.4631004.x CrossRefPubMedGoogle Scholar
  28. 28.
    Riechelmann H, Sauter A, Golze W, Hanft G, Schroen C, Hoermann K, Erhardt T, Gronau S (2008) Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol 44:823–829. doi: 10.1016/j.oraloncology.2007.10.009 CrossRefPubMedGoogle Scholar
  29. 29.
    Rupp U, Schoendorf-Holland E, Eichbaum M, Schuetz F, Lauschner I, Schmidt P, Staab A, Hanft G, Huober J, Sinn HP, Sohn C, Schneeweiss A (2007) Safety and pharmacokinetics of bivatuzumab mertansine in patients with CD44v6-positive metastatic breast cancer: final results of a phase I study. Anticancer Drugs 18:477–485. doi: 10.1097/CAD.0b013e32801403f4 CrossRefPubMedGoogle Scholar
  30. 30.
    Schotten U, Verheule S, Kirchhof P, Goette A (2011) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91:265–325. doi: 10.1152/physrev.00031.2009 CrossRefPubMedGoogle Scholar
  31. 31.
    Sherman LS, Matsumoto S, Su W, Srivastava T, Back SA (2015) Hyaluronan synthesis, catabolism, and signaling in neurodegenerative diseases. Int J Cell Biol 2015:368584. doi: 10.1155/2015/368584 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    So JY, Smolarek AK, Salerno DM, Maehr H, Uskokovic M, Liu F, Suh N (2013) Targeting CD44-STAT3 signaling by Gemini vitamin D analog leads to inhibition of invasion in basal-like breast cancer. PLoS ONE 8:e54020. doi: 10.1371/journal.pone.0054020 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stuhlmeier KM, Pollaschek C (2004) Differential effect of transforming growth factor beta (TGF-beta) on the genes encoding hyaluronan synthases and utilization of the p38 MAPK pathway in TGF-beta-induced hyaluronan synthase 1 activation. J Biol Chem 279:8753–8760. doi: 10.1074/jbc.M303945200 CrossRefPubMedGoogle Scholar
  34. 34.
    Su YJ, Lai HM, Chang YW, Chen GY, Lee JL (2011) Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO J 30:3186–3199. doi: 10.1038/emboj.2011.211 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sun Z, Zhou D, Xie X, Wang S, Wang Z, Zhao W, Xu H, Zheng L (2016) Cross-talk between macrophages and atrial myocytes in atrial fibrillation. Basic Res Cardiol 111:63CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Toole BP (2009) Hyaluronan-CD44 interactions in cancer: paradoxes and possibilities. Clin Cancer Res 15:7462–7468. doi: 10.1158/1078-0432.CCR-09-0479 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tsai CT, Lai LP, Kuo KT, Hwang JJ, Hsieh CS, Hsu KL, Tseng CD, Tseng YZ, Chiang FT, Lin JL (2008) Angiotensin II activates signal transducer and activators of transcription 3 via Rac1 in atrial myocytes and fibroblasts. Circulation 117:344–355. doi: 10.1161/CIRCULATIONAHA.107.695346 CrossRefPubMedGoogle Scholar
  38. 38.
    Verheule S, Sato T, Everett T, Engle SK, Otten D, der Rubart-von LM, Nakajima HO, Nakajima H, Field LJ, Olgin JE (2004) Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circ Res 94:1458–1465. doi: 10.1161/01.RES.0000129579.59664.9d CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang Q, Yu Y, Zhang P, Chen Y, Li C, Chen J, Wang Y, Li Y (2017) The crucial role of activin A/ALK4 pathway in the pathogenesis of Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation. Basic Res Cardiol 112:47. doi: 10.1007/s00395-017-0634-1 CrossRefPubMedGoogle Scholar
  40. 40.
    Xiao HD, Fuchs S, Campbell DJ, Lewis W, Dudley SC Jr, Kasi VS, Hoit BD, KeshelavaG Zhao H, Capecchi MR, Bernstein KE (2004) Mice with cardiac restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am J Pathol 165:1019–1032. doi: 10.1016/S0002-9440(10)63363-9 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yeh YH, Hsu LA, Chen YH, Kuo CT, Chang GJ, Chen WJ (2016) Protective role of heme oxygenase-1 in atrial remodeling. Basic Res Cardiol 111:58. doi: 10.1007/s00395-016-0577-y CrossRefPubMedGoogle Scholar
  42. 42.
    Yeh YH, Kuo CT, Chang GJ, Chen YH, Lai YJ, Cheng ML, Chen WJ (2015) Rosuvastatin suppresses atrial tachycardia-induced cellular remodeling via Akt/Nrf2/heme oxygenase-1 pathway. J Mol Cell Cardiol 82:84–92. doi: 10.1016/j.yjmcc.2015.03.004 CrossRefPubMedGoogle Scholar
  43. 43.
    Yeh YH, Kuo CT, Chang GJ, Qi XY, Nattel S, Chen WJ (2013) Nicotinamide adenine dinucleotide phosphate oxidase 4 mediates the differential responsiveness of atrial versus ventricular fibroblasts to transforming growth factor-β. Circ Arrhythm Electrophysiol 6:790–798. doi: 10.1161/CIRCEP.113.000338 CrossRefPubMedGoogle Scholar
  44. 44.
    Zheng Z, Katoh S, He Q, Oritani K, Miyake K, Lesley J, Hyman R, Hamik A, Parkhouse RM, Farr AG, Kincade PW (1995) Monoclonal antibodies to CD44 and their influence on hyaluronan recognition. J Cell Biol 130:485–495. doi: 10.1083/jcb.130.2.485 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Shang-Hung Chang
    • 1
  • Yung-Hsin Yeh
    • 1
  • Jia-Lin Lee
    • 2
  • Yu-Juei Hsu
    • 3
  • Chi-Tai Kuo
    • 1
  • Wei-Jan Chen
    • 1
    Email author
  1. 1.Cardiovascular Division, Chang-Gung Memorial HospitalChang-Gung University College of MedicineTaoyuanTaiwan
  2. 2.Department of Medical Science, Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchuTaiwan
  3. 3.Division of Nephrology, Department of Internal Medicine, Tri-Service General HospitalNational Defense Medical CenterTaipeiTaiwan

Personalised recommendations