Advertisement

Basic Research in Cardiology

, 112:57 | Cite as

Methylglyoxal-derived advanced glycation end products contribute to negative cardiac remodeling and dysfunction post-myocardial infarction

  • Nick J. R. Blackburn
  • Branka Vulesevic
  • Brian McNeill
  • Cagla Eren Cimenci
  • Ali Ahmadi
  • Mayte Gonzalez-Gomez
  • Aleksandra Ostojic
  • Zhiyuan Zhong
  • Michael Brownlee
  • Paul J. Beisswenger
  • Ross W. Milne
  • Erik J. SuuronenEmail author
Original Contribution

Abstract

Advanced glycation end-products (AGEs) have been associated with poorer outcomes after myocardial infarction (MI), and linked with heart failure. Methylglyoxal (MG) is considered the most important AGE precursor, but its role in MI is unknown. In this study, we investigated the involvement of MG-derived AGEs (MG-AGEs) in MI using transgenic mice that over-express the MG-metabolizing enzyme glyoxalase-1 (GLO1). MI was induced in GLO1 mice and wild-type (WT) littermates. At 6 h post-MI, mass spectrometry revealed that MG-H1 (a principal MG-AGE) was increased in the hearts of WT mice, and immunohistochemistry demonstrated that this persisted for 4 weeks. GLO1 over-expression reduced MG-AGE levels at 6 h and 4 weeks, and GLO1 mice exhibited superior cardiac function at 4 weeks post-MI compared to WT mice. Immunohistochemistry revealed greater vascular density and reduced cardiomyocyte apoptosis in GLO1 vs. WT mice. The recruitment of c-kit+ cells and their incorporation into the vasculature (c-kit+CD31+ cells) was higher in the infarcted myocardium of GLO1 mice. MG-AGEs appeared to accumulate in type I collagen surrounding arterioles, prompting investigation in vitro. In culture, the interaction of angiogenic bone marrow cells with MG-modified collagen resulted in reduced cell adhesion, increased susceptibility to apoptosis, fewer progenitor cells, and reduced angiogenic potential. This study reveals that MG-AGEs are produced post-MI and identifies a causative role for their accumulation in the cellular changes, adverse remodeling and functional loss of the heart after MI. MG may represent a novel target for preventing damage and improving function of the infarcted heart.

Keywords

Advanced glycation end-products Bone marrow cells Extracellular matrix Glyoxalase-1 Methylglyoxal Myocardial infarction 

Notes

Acknowledgements

The authors would like to thank Rick Seymour and Suzanne Crowe (University of Ottawa Heart Institute) for technical support. This work was supported by operating Grants from the Heart and Stroke Foundation of Canada (HSFC; GIA-000225), and the Canadian Institutes of Health Research (CIHR; FRN 125678). Nick Blackburn was supported by a University of Ottawa Faculty of Medicine Endowed Fund for Cardiac Research and the UOHI Foundation; Branka Vulesevic by a Canadian Graduate Scholarship from the CIHR; and Brian McNeill by a Research Fellowship Award from the HSFC.

Compliance with ethical standards

Conflict of interest

PJB has a financial interest in PreventAGE Healthcare, where the mass spectrometry of MG-AGEs was performed. The authors declare no other potential conflicts of interest.

References

  1. 1.
    Ahmed N, Argirov OK, Minhas HS, Cordeiro CA, Thornalley PJ (2002) Assay of advanced glycation endproducts (AGEs): surveying AGEs by chromatographic assay with derivatization by 6-aminoquinolyl-N-hydroxysuccinimidyl-carbamate and application to nepsilon-carboxymethyl-lysine- and nepsilon-(1-carboxyethyl)lysine-modified albumin. Biochem J 364:1–14. doi: 10.1042/bj3640001 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Aleshin A, Ananthakrishnan R, Li Q, Rosario R, Lu Y, Qu W, Song F, Bakr S, Szabolcs M, D’Agati V, Liu R, Homma S, Schmidt AM, Yan SF, Ramasamy R (2008) RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model. Am J Physiol Heart Circ Physiol 294:H1823–H1832. doi: 10.1152/ajpheart.01210.2007 CrossRefPubMedGoogle Scholar
  3. 3.
    Artym VV, Matsumoto K (2010) Imaging cells in three-dimensional collagen matrix. Curr Protoc Cell Biol 18:11–20. doi: 10.1002/0471143030.cb1018s48 (Chapter 10:Unit 10) Google Scholar
  4. 4.
    Beisswenger PJ, Howell SK, Russell G, Miller ME, Rich SS, Mauer M (2014) Detection of diabetic nephropathy from advanced glycation endproducts (AGEs) differs in plasma and urine, and is dependent on the method of preparation. Amino Acids 46:311–319. doi: 10.1007/s00726-013-1533-x CrossRefPubMedGoogle Scholar
  5. 5.
    Bento CF, Fernandes R, Ramalho J, Marques C, Shang F, Taylor A, Pereira P (2010) The chaperone-dependent ubiquitin ligase CHIP targets HIF-1alpha for degradation in the presence of methylglyoxal. PLoS One 5:e15062. doi: 10.1371/journal.pone.0015062 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ceradini DJ, Yao D, Grogan RH, Callaghan MJ, Edelstein D, Brownlee M, Gurtner GC (2008) Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 283:10930–10938. doi: 10.1074/jbc.M707451200 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Condorelli G, Roncarati R, Ross J Jr, Pisani A, Stassi G, Todaro M, Trocha S, Drusco A, Gu Y, Russo MA, Frati G, Jones SP, Lefer DJ, Napoli C, Croce CM (2001) Heart-targeted overexpression of caspase3 in mice increases infarct size and depresses cardiac function. Proc Natl Acad Sci USA 98:9977–9982. doi: 10.1073/pnas.161120198 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677. doi: 10.1126/science.1171643 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dobler D, Ahmed N, Song L, Eboigbodin KE, Thornalley PJ (2006) Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes 55:1961–1969. doi: 10.2337/db05-1634 CrossRefPubMedGoogle Scholar
  10. 10.
    Fadini GP, Losordo D, Dimmeler S (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110:624–637. doi: 10.1161/CIRCRESAHA.111.243386 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fazel S, Cimini M, Chen L, Li S, Angoulvant D, Fedak P, Verma S, Weisel RD, Keating A, Li RK (2006) Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Investig 116:1865–1877. doi: 10.1172/JCI27019 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Francis-Sedlak ME, Moya ML, Huang JJ, Lucas SA, Chandrasekharan N, Larson JC, Cheng MH, Brey EM (2010) Collagen glycation alters neovascularization in vitro and in vivo. Microvasc Res 80:3–9. doi: 10.1016/j.mvr.2009.12.005 CrossRefPubMedGoogle Scholar
  13. 13.
    Geoffrion M, Du X, Irshad Z, Vanderhyden BC, Courville K, Sui G, D’Agati VD, Ott-Braschi S, Rabbani N, Thornalley PJ, Brownlee M, Milne RW (2014) Differential effects of glyoxalase 1 overexpression on diabetic atherosclerosis and renal dysfunction in streptozotocin-treated, apolipoprotein E-deficient mice. Physiol Rep. doi: 10.14814/phy2.12043 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070. doi: 10.1161/CIRCRESAHA.110.223545 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Giacco F, Du X, D’Agati VD, Milne R, Sui G, Geoffrion M, Brownlee M (2014) Knockdown of glyoxalase 1 mimics diabetic nephropathy in nondiabetic mice. Diabetes 63:291–299. doi: 10.2337/db13-0316 CrossRefPubMedGoogle Scholar
  16. 16.
    Hanssen NM, Wouters K, Huijberts MS, Gijbels MJ, Sluimer JC, Scheijen JL, Heeneman S, Biessen EA, Daemen MJ, Brownlee M, de Kleijn DP, Stehouwer CD, Pasterkamp G, Schalkwijk CG (2014) Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur Heart J 35:1137–1146. doi: 10.1093/eurheartj/eht402 CrossRefPubMedGoogle Scholar
  17. 17.
    Harats D, Kurihara H, Belloni P, Oakley H, Ziober A, Ackley D, Cain G, Kurihara Y, Lawn R, Sigal E (1995) Targeting gene expression to the vascular wall in transgenic mice using the murine preproendothelin-1 promoter. J Clin Investig 95:1335–1344. doi: 10.1172/JCI117784 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hartog JW, Voors AA, Bakker SJ, Smit AJ, van Veldhuisen DJ (2007) Advanced glycation end-products (AGEs) and heart failure: pathophysiology and clinical implications. Eur J Heart Fail 9:1146–1155. doi: 10.1016/j.ejheart.2007.09.009 CrossRefPubMedGoogle Scholar
  19. 19.
    Hartog JW, Voors AA, Schalkwijk CG, Scheijen J, Smilde TD, Damman K, Bakker SJ, Smit AJ, van Veldhuisen DJ (2007) Clinical and prognostic value of advanced glycation end-products in chronic heart failure. Eur Heart J 28:2879–2885. doi: 10.1093/eurheartj/ehm486 CrossRefPubMedGoogle Scholar
  20. 20.
    Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943. doi: 10.1016/S0140-6736(14)60107-0 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Heusch G, Rassaf T (2016) Time to give up on cardioprotection? A critical appraisal of clinical studies on ischemic pre-, post-, and remote conditioning. Circ Res 119:676–695. doi: 10.1161/CIRCRESAHA.116.308736 CrossRefPubMedGoogle Scholar
  22. 22.
    Kalra BS, Roy V (2012) Efficacy of metabolic modulators in ischemic heart disease: an overview. J Clin Pharmacol 52:292–305. doi: 10.1177/0091270010396042 CrossRefPubMedGoogle Scholar
  23. 23.
    Kang PM, Izumo S (2003) Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends Mol Med 9:177–182. doi: 10.1016/s1471-4914(03)00025-x CrossRefPubMedGoogle Scholar
  24. 24.
    Kemp CD, Conte JV (2012) The pathophysiology of heart failure. Cardiovasc Pathol 21:365–371. doi: 10.1016/j.carpath.2011.11.007 CrossRefPubMedGoogle Scholar
  25. 25.
    Kuraitis D, Hou C, Zhang Y, Vulesevic B, Sofrenovic T, McKee D, Sharif Z, Ruel M, Suuronen EJ (2011) Ex vivo generation of a highly potent population of circulating angiogenic cells using a collagen matrix. J Mol Cell Cardiol 51:187–197. doi: 10.1016/j.yjmcc.2011.04.011 CrossRefPubMedGoogle Scholar
  26. 26.
    Kuzuya M, Satake S, Ai S, Asai T, Kanda S, Ramos MA, Miura H, Ueda M, Iguchi A (1998) Inhibition of angiogenesis on glycated collagen lattices. Diabetologia 41:491–499. doi: 10.1007/s001250050937 CrossRefPubMedGoogle Scholar
  27. 27.
    Li SY, Sigmon VK, Babcock SA, Ren J (2007) Advanced glycation endproduct induces ROS accumulation, apoptosis, MAP kinase activation and nuclear O-GlcNAcylation in human cardiac myocytes. Life Sci 80:1051–1056. doi: 10.1016/j.lfs.2006.11.035 CrossRefPubMedGoogle Scholar
  28. 28.
    Maessen DE, Stehouwer CD, Schalkwijk CG (2015) The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin Sci 128:839–861. doi: 10.1042/CS20140683 CrossRefPubMedGoogle Scholar
  29. 29.
    Masoud WG, Ussher JR, Wang W, Jaswal JS, Wagg CS, Dyck JR, Lygate CA, Neubauer S, Clanachan AS, Lopaschuk GD (2014) Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc Res 101:30–38. doi: 10.1093/cvr/cvt216 CrossRefPubMedGoogle Scholar
  30. 30.
    Molgat AS, Tilokee EL, Rafatian G, Vulesevic B, Ruel M, Milne R, Suuronen EJ, Davis DR (2014) Hyperglycemia inhibits cardiac stem cell-mediated cardiac repair and angiogenic capacity. Circulation 130:S70–S76. doi: 10.1161/CIRCULATIONAHA.113.007908 CrossRefPubMedGoogle Scholar
  31. 31.
    Mulder DJ, van Haelst PL, Graaff R, Gans RO, Zijlstra F, Smit AJ (2009) Skin autofluorescence is elevated in acute myocardial infarction and is associated with the one-year incidence of major adverse cardiac events. Neth Heart J 17:162–168. doi: 10.1007/BF03086239 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ohtsuka M, Takano H, Zou Y, Toko H, Akazawa H, Qin Y, Suzuki M, Hasegawa H, Nakaya H, Komuro I (2004) Cytokine therapy prevents left ventricular remodeling and dysfunction after myocardial infarction through neovascularization. FASEB J 18:851–853. doi: 10.1096/fj.03-0637fje PubMedGoogle Scholar
  33. 33.
    Rabbani N, Thornalley PJ (2014) Measurement of methylglyoxal by stable isotopic dilution analysis LC-MS/MS with corroborative prediction in physiological samples. Nat Protoc 9:1969–1979. doi: 10.1038/nprot.2014.129 CrossRefPubMedGoogle Scholar
  34. 34.
    Rabbani N, Thornalley PJ (2012) Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 42:1133–1142. doi: 10.1007/s00726-010-0783-0 CrossRefPubMedGoogle Scholar
  35. 35.
    Rabbani N, Xue M, Thornalley PJ (2016) Methylglyoxal-induced dicarbonyl stress in aging and disease: first steps towards glyoxalase 1-based treatments. Clin Sci 130:1677–1696. doi: 10.1042/CS20160025 CrossRefPubMedGoogle Scholar
  36. 36.
    Takagawa J, Zhang Y, Wong ML, Sievers RE, Kapasi NK, Wang Y, Yeghiazarians Y, Lee RJ, Grossman W, Springer ML (2007) Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches. J Appl Physiol 102:2104–2111. doi: 10.1152/japplphysiol.00033.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Talior-Volodarsky I, Connelly KA, Arora PD, Gullberg D, McCulloch CA (2012) alpha11 integrin stimulates myofibroblast differentiation in diabetic cardiomyopathy. Cardiovasc Res 96:265–275. doi: 10.1093/cvr/cvs259 CrossRefPubMedGoogle Scholar
  38. 38.
    Thangarajah H, Yao D, Chang EI, Shi Y, Jazayeri L, Vial IN, Galiano RD, Du XL, Grogan R, Galvez MG, Januszyk M, Brownlee M, Gurtner GC (2009) The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci USA 106:13505–13510. doi: 10.1073/pnas.0906670106 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tonnessen T, Lunde PK, Giaid A, Sejersted OM, Christensen G (1998) Pulmonary and cardiac expression of preproendothelin-1 mRNA are increased in heart failure after myocardial infarction in rats. Localization of preproendothelin-1 mRNA and endothelin peptide. Cardiovasc Res 39:633–643. doi: 10.1016/S0008-6363(98)00156-4 CrossRefPubMedGoogle Scholar
  40. 40.
    Venkatraman J, Aggarwal K, Balaram P (2001) Helical peptide models for protein glycation: proximity effects in catalysis of the Amadori rearrangement. Chem Biol 8:611–625. doi: 10.1016/S1074-5521(01)00036-9 CrossRefPubMedGoogle Scholar
  41. 41.
    Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ, Bijlsma JW, Lafeber FP, Baynes JW, TeKoppele JM (2000) Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 275:39027–39031. doi: 10.1074/jbc.M006700200 CrossRefPubMedGoogle Scholar
  42. 42.
    Vulesevic B, McNeill B, Geoffrion M, Kuraitis D, McBane JE, Lochhead M, Vanderhyden BC, Korbutt GS, Milne RW, Suuronen EJ (2014) Glyoxalase-1 overexpression in bone marrow cells reverses defective neovascularization in STZ-induced diabetic mice. Cardiovasc Res 101:306–316. doi: 10.1093/cvr/cvt259 CrossRefPubMedGoogle Scholar
  43. 43.
    Vulesevic B, McNeill B, Giacco F, Maeda K, Blackburn NJ, Brownlee M, Milne RW, Suuronen EJ (2016) Methylglyoxal-induced endothelial cell loss and inflammation contribute to the development of diabetic cardiomyopathy. Diabetes 65:1699–1713. doi: 10.2337/db15-0568 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vulesevic B, Milne RW, Suuronen EJ (2014) Reducing methylglyoxal as a therapeutic target for diabetic heart disease. Biochem Soc Trans 42:523–527. doi: 10.1042/BST20130254 CrossRefPubMedGoogle Scholar
  45. 45.
    Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC, Kitsis RN (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Investig 111:1497–1504. doi: 10.1172/jci200317664 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yao D, Brownlee M (2010) Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes 59:249–255. doi: 10.2337/db09-0801 CrossRefPubMedGoogle Scholar
  47. 47.
    Yuen A, Laschinger C, Talior I, Lee W, Chan M, Birek J, Young EW, Sivagurunathan K, Won E, Simmons CA, McCulloch CA (2010) Methylglyoxal-modified collagen promotes myofibroblast differentiation. Matrix Biol 29:537–548. doi: 10.1016/j.matbio.2010.04.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Nick J. R. Blackburn
    • 1
    • 2
  • Branka Vulesevic
    • 1
    • 2
  • Brian McNeill
    • 1
  • Cagla Eren Cimenci
    • 1
    • 2
  • Ali Ahmadi
    • 1
    • 2
  • Mayte Gonzalez-Gomez
    • 1
    • 2
  • Aleksandra Ostojic
    • 1
    • 2
  • Zhiyuan Zhong
    • 3
  • Michael Brownlee
    • 4
  • Paul J. Beisswenger
    • 5
  • Ross W. Milne
    • 6
  • Erik J. Suuronen
    • 1
    • 2
    Email author
  1. 1.Division of Cardiac SurgeryUniversity of Ottawa Heart InstituteOttawaCanada
  2. 2.Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
  3. 3.Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina
  4. 4.Diabetes Research Center and Departments of Internal Medicine and PathologyAlbert Einstein College of MedicineBronxUSA
  5. 5.Geisel School of Medicine at DartmouthPreventAGE HealthcareLebanonUSA
  6. 6.Diabetes and Atherosclerosis LaboratoryUniversity of Ottawa Heart InstituteOttawaCanada

Personalised recommendations