Reduction of SR Ca2+ leak and arrhythmogenic cellular correlates by SMP-114, a novel CaMKII inhibitor with oral bioavailability

  • Stefan Neef
  • Christian Mann
  • Anne Zwenger
  • Nataliya Dybkova
  • Lars S. Maier
Original Contribution

Abstract

Sarcoplasmic reticulum (SR) Ca2+ leak induced by Ca2+/calmodulin-dependent protein kinase II (CaMKII) is centrally involved in atrial and ventricular arrhythmogenesis as well as heart failure remodeling. Consequently, treating SR Ca2+ leak has been proposed as a novel therapeutic paradigm, but compounds for use in humans are lacking. SMP-114 (“Rimacalib”) is a novel, orally available CaMKII inhibitor developed for human use that has already entered clinical phase II trials to treat rheumatoid arthritis. We speculated that SMP-114 might also be useful to treat cardiac SR Ca2+ leak. SMP-114 significantly reduces SR Ca2+ leak (as assessed by Ca2+ sparks) in human atrial (0.72 ± 0.33 sparks/100 µm/s vs. control 3.02 ± 0.91 sparks/100 µm/s) and failing left ventricular (0.78 ± 0.23 vs. 1.69 ± 0.27 sparks/100 µm/s) as well as in murine ventricular cardiomyocytes (0.30 ± 0.07 vs. 1.50 ± 0.28 sparks/100 µm/s). Associated with lower SR Ca2+ leak, we found that SMP-114 suppressed the occurrence of spontaneous arrhythmogenic spontaneous Ca2+ release (0.356 ± 0.109 vs. 0.927 ± 0.216 events per 30 s stimulation cessation). In consequence, post-rest potentiation of Ca2+-transient amplitude (measured using Fura-2) during the 30 s pause was improved by SMP-114 (52 ± 5 vs. 37 ± 4%). Noteworthy, SMP-114 has these beneficial effects without negatively impairing global excitation–contraction coupling: neither systolic Ca2+ release nor single cell contractility was compromised, and also SR Ca2+ reuptake, in line with resulting cardiomyocyte relaxation, was not impaired by SMP-114 in our assays. SMP-114 demonstrated potential to treat SR Ca2+ leak and consequently proarrhythmogenic events in rodent as well as in human atrial cardiomyocytes and cardiomyocytes from patients with heart failure. Further research is necessary towards clinical use in cardiac disease.

Keywords

Heart failure Arrhythmias SR Ca2+ leak CaMKII 

Notes

Acknowledgements

We thank Dainippon Sumitomo Pharma for having provided SMP-114 for our experiments. The technical expertise of Felicia Radtke, Timo Schulte, and Thomas Sowa was greatly appreciated. SN receives funding from a Regensburg University ReForM B research grant and Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK B 15-014 Extern). LSM receives funding from Deutsche Forschungsgemeinschaft (MA1982/5-1).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Assessment of safety, pharmacokinetics and efficacy in a combination treatment with SMP-114—full text view—ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/study/NCT00296257. Accessed 24 Apr 2017
  2. 2.
    Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA 106:2342–2347. doi: 10.1073/pnas.0813013106 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Beavers DL, Wang W, Ather S, Voigt N, Garbino A, Dixit SS, Landstrom AP, Li N, Wang Q, Olivotto I, Dobrev D, Ackerman MJ, Wehrens XHT (2013) Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization. J Am Coll Cardiol 62:2010–2019. doi: 10.1016/j.jacc.2013.06.052 CrossRefPubMedGoogle Scholar
  4. 4.
    Belevych AE, Terentyev D, Terentyeva R, Nishijima Y, Sridhar A, Hamlin RL, Carnes CA, Györke S (2011) The relationship between arrhythmogenesis and impaired contractility in heart failure: role of altered ryanodine receptor function. Cardiovasc Res 90:493–502. doi: 10.1093/cvr/cvr025 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205. doi: 10.1038/415198a CrossRefPubMedGoogle Scholar
  6. 6.
    Chelu MG, Sarma S, Sood S, Wang S, van Oort RJ, Skapura DG, Li N, Santonastasi M, Müller FU, Schmitz W, Schotten U, Anderson ME, Valderrábano M, Dobrev D, Wehrens XHT (2009) Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest 119:1940–1951. doi: 10.1172/JCI37059 PubMedPubMedCentralGoogle Scholar
  7. 7.
    Christ T, Rozmaritsa N, Engel A, Berk E, Knaut M, Metzner K, Canteras M, Ravens U, Kaumann A (2014) Arrhythmias, elicited by catecholamines and serotonin, vanish in human chronic atrial fibrillation. Proc Natl Acad Sci USA 111:11193–11198. doi: 10.1073/pnas.1324132111 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cowie MR, Wood DA, Coats AJ, Thompson SG, Suresh V, Poole-Wilson PA, Sutton GC (2000) Survival of patients with a new diagnosis of heart failure: a population based study. Heart Br Card Soc 83:505–510. doi: 10.1136/heart.83.5.505 CrossRefGoogle Scholar
  9. 9.
    Cuello F, Lorenz K (2016) Inhibition of cardiac CaMKII to cure heart failure: step by step towards translation? Basic Res Cardiol 111:66. doi: 10.1007/s00395-016-0582-1 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dybkova N, Wagner S, Backs J, Hund TJ, Mohler PJ, Sowa T, Nikolaev VO, Maier LS (2014) Tubulin polymerization disrupts cardiac β-adrenergic regulation of late I Na. Cardiovasc Res 103:168–177. doi: 10.1093/cvr/cvu120 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Furuichi H, Tagashira S, Fukushim A, Ueda Y (2007) Novel CaMKII inhibitor SMP-114, with excellent efficacy in collagen-induced arthritis in rats. Ann Rheum Dis 66(Suppl II):288Google Scholar
  12. 12.
    Gaskin C, Taylor M, Tagashira R, Takada Y (2003) Safety, tolerability and pharmacokinetics of SMP-114 (a novel candidate DMARD) in healthy volunteers. Ann Rheum Dis 62(Suppl I):179–180Google Scholar
  13. 13.
    Hagi K, Nishikaku F (2006) Fibroblast survival is reduced by SMP-114: its mode of action. Ann Rheum Dis 65(Suppl II):339Google Scholar
  14. 14.
    Kreusser MM, Lehmann LH, Wolf N, Keranov S, Jungmann A, Gröne H-J, Müller OJ, Katus HA, Backs J (2016) Inducible cardiomyocyte-specific deletion of CaM kinase II protects from pressure overload-induced heart failure. Basic Res Cardiol 111:65. doi: 10.1007/s00395-016-0581-2 CrossRefPubMedGoogle Scholar
  15. 15.
    Lehnart SE, Terrenoire C, Reiken S, Wehrens XHT, Song L-S, Tillman EJ, Mancarella S, Coromilas J, Lederer WJ, Kass RS, Marks AR (2006) Stabilization of cardiac ryanodine receptor prevents intracellular calcium leak and arrhythmias. Proc Natl Acad Sci USA 103:7906–7910. doi: 10.1073/pnas.0602133103 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lenski M, Schleider G, Kohlhaas M, Adrian L, Adam O, Tian Q, Kaestner L, Lipp P, Lehrke M, Maack C, Böhm M, Laufs U (2015) Arrhythmia causes lipid accumulation and reduced glucose uptake. Basic Res Cardiol 110:40. doi: 10.1007/s00395-015-0497-2 CrossRefPubMedGoogle Scholar
  17. 17.
    MacIntyre K, Capewell S, Stewart S, Chalmers JW, Boyd J, Finlayson A, Redpath A, Pell JP, McMurray JJ (2000) Evidence of improving prognosis in heart failure: trends in case fatality in 66 547 patients hospitalized between 1986 and 1995. Circulation 102:1126–1131. doi: 10.1161/01.CIR.102.10.1126 CrossRefPubMedGoogle Scholar
  18. 18.
    Mason FE, Sossalla S (2016) The significance of the late Na + current for arrhythmia induction and the therapeutic antiarrhythmic potential of ranolazine. J Cardiovasc Pharmacol Ther 22:40–50. doi: 10.1177/1074248416644989 CrossRefGoogle Scholar
  19. 19.
    Mosterd A, Cost B, Hoes AW, de Bruijne MC, Deckers JW, Hofman A, Grobbee DE (2001) The prognosis of heart failure in the general population: the Rotterdam study. Eur Heart J 22:1318–1327. doi: 10.1053/euhj.2000.2533 CrossRefPubMedGoogle Scholar
  20. 20.
    Mustroph J, Neef S, Maier LS (2016) CaMKII as a target for arrhythmia suppression. Pharmacol Ther (in press). doi: 10.1016/j.pharmthera.2016.10.006 Google Scholar
  21. 21.
    Neef S, Maier LS (2013) Novel aspects of excitation–contraction coupling in heart failure. Basic Res Cardiol 108:360. doi: 10.1007/s00395-013-0360-2 CrossRefPubMedGoogle Scholar
  22. 22.
    Neef S, Dybkova N, Sossalla S, Ort KR, Fluschnik N, Neumann K, Seipelt R, Schöndube FA, Hasenfuss G, Maier LS (2010) CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res 106:1134–1144. doi: 10.1161/CIRCRESAHA.109.203836 CrossRefPubMedGoogle Scholar
  23. 23.
    Neef S, Sag CM, Daut M, Bäumer H, Grefe C, El-Armouche A, DeSantiago J, Pereira L, Bers DM, Backs J, Maier LS (2013) While systolic cardiomyocyte function is preserved, diastolic myocyte function and recovery from acidosis are impaired in CaMKIIδ-KO mice. J Mol Cell Cardiol 59:107–116. doi: 10.1016/j.yjmcc.2013.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Packer M (1985) Sudden unexpected death in patients with congestive heart failure: a second frontier. Circulation 72:681–685. doi: 10.1161/01.CIR.72.4.681 CrossRefPubMedGoogle Scholar
  25. 25.
    Pellicena P, Schulman H (2014) CaMKII inhibitors: from research tools to therapeutic agents. Front Pharmacol 5:21. doi: 10.3389/fphar.2014.00021 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Picht E, Zima AV, Blatter LA, Bers DM (2007) SparkMaster: automated calcium spark analysis with ImageJ. Am J Physiol Cell Physiol 293:C1073–C1081. doi: 10.1152/ajpcell.00586.2006 CrossRefPubMedGoogle Scholar
  27. 27.
    Pieske B, Sütterlin M, Schmidt-Schweda S, Minami K, Meyer M, Olschewski M, Holubarsch C, Just H, Hasenfuss G (1996) Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy. Functional evidence for alterations in intracellular Ca2+ handling. J Clin Invest 98:764–776. doi: 10.1172/JCI118849 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Respress JL, van Oort RJ, Li N, Rolim N, Dixit SS, deAlmeida A, Voigt N, Lawrence WS, Skapura DG, Skårdal K, Wisløff U, Wieland T, Ai X, Pogwizd SM, Dobrev D, Wehrens XHT (2012) Role of RyR2 phosphorylation at S2814 during heart failure progression. Circ Res 110:1474–1483. doi: 10.1161/CIRCRESAHA.112.268094 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sag CM, Wadsack DP, Khabbazzadeh S, Abesser M, Grefe C, Neumann K, Opiela M-K, Backs J, Olson EN, Brown JH, Neef S, Maier SKG, Maier LS (2009) Calcium/calmodulin-dependent protein kinase II contributes to cardiac arrhythmogenesis in heart failure. Circ Heart Fail 2:664–675. doi: 10.1161/CIRCHEARTFAILURE.109.865279 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Schulte JS, Fehrmann E, Tekook MA, Kranick D, Fels B, Li N, Wehrens XHT, Heinick A, Seidl MD, Schmitz W, Müller FU (2016) Cardiac expression of the CREM repressor isoform CREM-IbΔC-X in mice leads to arrhythmogenic alterations in ventricular cardiomyocytes. Basic Res Cardiol 111:15. doi: 10.1007/s00395-016-0532-y CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shannon TR, Ginsburg KS, Bers DM (2002) Quantitative assessment of the SR Ca2+ leak–load relationship. Circ Res 91:594–600. doi: 10.1161/01.RES.0000036914.12686.28 CrossRefPubMedGoogle Scholar
  32. 32.
    Sossalla S, Fluschnik N, Schotola H, Ort KR, Neef S, Schulte T, Wittköpper K, Renner A, Schmitto JD, Gummert J, El-Armouche A, Hasenfuss G, Maier LS (2010) Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ Res 107:1150–1161. doi: 10.1161/CIRCRESAHA.110.220418 CrossRefPubMedGoogle Scholar
  33. 33.
    Sossalla S, Maurer U, Schotola H, Hartmann N, Didié M, Zimmermann W-H, Jacobshagen C, Wagner S, Maier LS (2011) Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδ(C) can be reversed by inhibition of late Na(+) current. Basic Res Cardiol 106:263–272. doi: 10.1007/s00395-010-0136-x CrossRefPubMedGoogle Scholar
  34. 34.
    Tagashira S, Fukushima A (2008) Combination drug for treating autoimmune disease. Patent WO/2006/049215Google Scholar
  35. 35.
    Tessier S, Karczewski P, Krause EG, Pansard Y, Acar C, Lang-Lazdunski M, Mercadier JJ, Hatem SN (1999) Regulation of the transient outward K(+) current by Ca(2+)/calmodulin-dependent protein kinases II in human atrial myocytes. Circ Res 85:810–819. doi: 10.1161/01.RES.85.9.810 CrossRefPubMedGoogle Scholar
  36. 36.
    Toischer K, Hartmann N, Wagner S, Fischer TH, Herting J, Danner BC, Sag CM, Hund TJ, Mohler PJ, Belardinelli L, Hasenfuss G, Maier LS, Sossalla S (2013) Role of late sodium current as a potential arrhythmogenic mechanism in the progression of pressure-induced heart disease. J Mol Cell Cardiol 61:111–122. doi: 10.1016/j.yjmcc.2013.03.021 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tsuji Y, Hojo M, Voigt N, El-Armouche A, Inden Y, Murohara T, Dobrev D, Nattel S, Kodama I, Kamiya K (2011) Ca(2+)-related signaling and protein phosphorylation abnormalities play central roles in a new experimental model of electrical storm. Circulation 123:2192–2203. doi: 10.1161/CIRCULATIONAHA.110.016683 CrossRefPubMedGoogle Scholar
  38. 38.
    van Berlo JH, Maillet M, Molkentin JD (2013) Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest 123:37–45. doi: 10.1172/JCI62839 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    van Oort RJ, McCauley MD, Dixit SS, Pereira L, Yang Y, Respress JL, Wang Q, De Almeida AC, Skapura DG, Anderson ME, Bers DM, Wehrens XHT (2010) Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 122:2669–2679. doi: 10.1161/CIRCULATIONAHA.110.982298 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Voigt N, Li N, Wang Q, Wang W, Trafford AW, Abu-Taha I, Sun Q, Wieland T, Ravens U, Nattel S, Wehrens XHT, Dobrev D (2012) Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+–Ca2+ exchanger function underlie delayed after depolarizations in patients with chronic atrial fibrillation. Circulation 125:2059–2070. doi: 10.1161/CIRCULATIONAHA.111.067306 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Voigt N, Heijman J, Wang Q, Chiang DY, Li N, Karck M, Wehrens XHT, Nattel S, Dobrev D (2014) Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation 129:145–156. doi: 10.1161/CIRCULATIONAHA.113.006641 CrossRefPubMedGoogle Scholar
  42. 42.
    Wagner S, Dybkova N, Rasenack ECL, Jacobshagen C, Fabritz L, Kirchhof P, Maier SKG, Zhang T, Hasenfuss G, Brown JH, Bers DM, Maier LS (2006) Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 116:3127–3138. doi: 10.1172/JCI26620 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wagner S, Ruff HM, Weber SL, Bellmann S, Sowa T, Schulte T, Anderson ME, Grandi E, Bers DM, Backs J, Belardinelli L, Maier LS (2011) Reactive oxygen species-activated Ca/calmodulin kinase IIδ is required for late I(Na) augmentation leading to cellular Na and Ca overload. Circ Res 108:555–565. doi: 10.1161/CIRCRESAHA.110.221911 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Westra J, Brouwer E, Bouwman E, Doornbos-van der Meer B, Posthumus MD, van Leeuwen MA, Limburg PC, Ueda Y, Kallenberg CGM (2009) Role for CaMKII inhibition in rheumatoid arthritis: effects on HIF-1-induced VEGF production by rheumatoid synovial fibroblasts. Ann N Y Acad Sci 1173:706–711. doi: 10.1111/j.1749-6632.2009.04736.x CrossRefPubMedGoogle Scholar
  45. 45.
    Westra J, Brouwer E, van Roosmalen IAM, Doornbos-van der Meer B, van Leeuwen MA, Posthumus MD, Kallenberg CGM (2010) Expression and regulation of HIF-1alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKII inhibitor. BMC Musculoskelet Disord 11:61. doi: 10.1186/1471-2474-11-61 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wittköpper K, Fabritz L, Neef S, Ort KR, Grefe C, Unsöld B, Kirchhof P, Maier LS, Hasenfuss G, Dobrev D, Eschenhagen T, El-Armouche A (2010) Constitutively active phosphatase inhibitor-1 improves cardiac contractility in young mice but is deleterious after catecholaminergic stress and with aging. J Clin Invest 120:617–626. doi: 10.1172/JCI40545 PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Klinik für Innere Medizin IIUniversitätsklinikum RegensburgRegensburgGermany
  2. 2.Department of Cardiology and PneumologyUniversity Medical Center GöttingenGöttingenGermany

Personalised recommendations