Exercise-induced circulating extracellular vesicles protect against cardiac ischemia–reperfusion injury

  • Yihua Bei
  • Tianzhao Xu
  • Dongchao Lv
  • Pujiao Yu
  • Jiahong Xu
  • Lin Che
  • Avash Das
  • John Tigges
  • Vassilios Toxavidis
  • Ionita Ghiran
  • Ravi Shah
  • Yongqin Li
  • Yuhui Zhang
  • Saumya Das
  • Junjie XiaoEmail author
Original Contribution


Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H2O2-treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.


Extracellular vesicles Exercise Ischemia–reperfusion injury 



This work was supported by the grants from National Natural Science Foundation of China (81570362 and 91639101 to J.J. Xiao and 81400647 to Y. Bei), the development fund for Shanghai talents (to J.J. Xiao), and the National Institutes of Health (NCATS Grant UH3 TR000901 to S. Das and U01 HL126497 to I.G.).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interests.

Supplementary material

395_2017_628_MOESM1_ESM.pdf (23 kb)
Supplementary Figure 1 The mRNA levels of STAM1, TSG101, RAB11, and RAB27A were not changed in H9C2 cells treated with IGF-1 (n=6) (PDF 22 kb)
395_2017_628_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 16 kb)


  1. 1.
    Aoi W, Ichikawa H, Mune K, Tanimura Y, Mizushima K, Naito Y, Yoshikawa T (2013) Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men. Front Physiol 4:80. doi: 10.3389/fphys.2013.00080 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Aoi W, Sakuma K (2014) Does regulation of skeletal muscle function involve circulating microRNAs? Front Physiol 5:39. doi: 10.3389/fphys.2014.00039 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103:530–541. doi: 10.1093/cvr/cvu167 CrossRefPubMedGoogle Scholar
  4. 4.
    Barile L, Moccetti T, Marban E, Vassalli G (2016) Roles of exosomes in cardioprotection. Eur Heart J. doi: 10.1093/eurheartj/ehw304 Google Scholar
  5. 5.
    Bei Y, Fu S, Chen X, Chen M, Zhou Q, Yu P, Yao J, Wang H, Che L, Xu J, Xiao J (2017) Cardiac cell proliferation is not necessary for exercise-induced cardiac growth but required for its protection against ischaemia/reperfusion injury. J Cell Mol Med. doi: 10.1111/jcmm.13078 PubMedGoogle Scholar
  6. 6.
    Bei Y, Zhou Q, Sun Q, Xiao J (2015) Exercise as a platform for pharmacotherapy development in cardiac diseases. Curr Pharm Des 21:4409–4416CrossRefPubMedGoogle Scholar
  7. 7.
    Bell RM, Botker HE, Carr RD, Davidson SM, Downey JM, Dutka DP, Heusch G, Ibanez B, Macallister R, Stoppe C, Ovize M, Redington A, Walker JM, Yellon DM (2016) 9th Hatter Biannual Meeting: position document on ischaemia/reperfusion injury, conditioning and the ten commandments of cardioprotection. Basic Res Cardiol 111:41. doi: 10.1007/s00395-016-0558-1 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cabrera-Fuentes HA, Aragones J, Bernhagen J, Boening A, Boisvert WA, Botker HE, Bulluck H, Cook S, Di Lisa F, Engel FB, Engelmann B, Ferrazzi F, Ferdinandy P, Fong A, Fleming I, Gnaiger E, Hernandez-Resendiz S, Kalkhoran SB, Kim MH, Lecour S, Liehn EA, Marber MS, Mayr M, Miura T, Ong SB, Peter K, Sedding D, Singh MK, Suleiman MS, Schnittler HJ, Schulz R, Shim W, Tello D, Vogel CW, Walker M, Li QO, Yellon DM, Hausenloy DJ, Preissner KT (2016) From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on “New frontiers in cardiovascular research”. Basic Res Cardiol 111:69. doi: 10.1007/s00395-016-0586-x CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Calvert JW, Condit ME, Aragon JP, Nicholson CK, Moody BF, Hood RL, Sindler AL, Gundewar S, Seals DR, Barouch LA, Lefer DJ (2011) Exercise protects against myocardial ischemia–reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res 108:1448–1458. doi: 10.1161/CIRCRESAHA.111.241117 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321CrossRefPubMedGoogle Scholar
  11. 11.
    Chaturvedi P, Kalani A, Medina I, Familtseva A, Tyagi SC (2015) Cardiosome mediated regulation of MMP9 in diabetic heart: role of mir29b and mir455 in exercise. J Cell Mol Med 19:2153–2161. doi: 10.1111/jcmm.12589 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Chistiakov DA, Orekhov AN, Bobryshev YV (2016) Cardiac extracellular vesicles in normal and infarcted heart. Int J Mol Sci. doi: 10.3390/ijms17010063 PubMedPubMedCentralGoogle Scholar
  13. 13.
    Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289. doi: 10.1146/annurev-cellbio-101512-122326 CrossRefPubMedGoogle Scholar
  14. 14.
    Danielson KM, Estanislau J, Tigges J, Toxavidis V, Camacho V, Felton EJ, Khoory J, Kreimer S, Ivanov AR, Mantel PY, Jones J, Akuthota P, Das S, Ghiran I (2016) Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry. PLoS One 11:e0144678. doi: 10.1371/journal.pone.0144678 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Earnest CP, Lupo M, Thibodaux J, Hollier C, Butitta B, Lejeune E, Johannsen NM, Gibala MJ, Church TS (2013) Interval training in men at risk for insulin resistance. Int J Sports Med 34:355–363. doi: 10.1055/s-0032-1311594 PubMedGoogle Scholar
  16. 16.
    Emanueli C, Shearn AI, Angelini GD, Sahoo S (2015) Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vasc Pharmacol 71:24–30. doi: 10.1016/j.vph.2015.02.008 CrossRefGoogle Scholar
  17. 17.
    Forterre A, Jalabert A, Berger E, Baudet M, Chikh K, Errazuriz E, De Larichaudy J, Chanon S, Weiss-Gayet M, Hesse AM, Record M, Geloen A, Lefai E, Vidal H, Coute Y, Rome S (2014) Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk? PLoS One 9:e84153. doi: 10.1371/journal.pone.0084153 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fruhbeis C, Helmig S, Tug S, Simon P, Kramer-Albers EM (2015) Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles 4:28239. doi: 10.3402/jev.v4.28239 CrossRefPubMedGoogle Scholar
  19. 19.
    Gomes EC, Silva AN, de Oliveira MR (2012) Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxid Med Cell Longev 2012:756132. doi: 10.1155/2012/756132 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Gorgens SW, Eckardt K, Jensen J, Drevon CA, Eckel J (2015) Exercise and regulation of adipokine and myokine production. Prog Mol Biol Transl Sci 135:313–336. doi: 10.1016/bs.pmbts.2015.07.002 CrossRefPubMedGoogle Scholar
  21. 21.
    Guescini M, Canonico B, Lucertini F, Maggio S, Annibalini G, Barbieri E, Luchetti F, Papa S, Stocchi V (2015) Muscle releases alpha-sarcoglycan positive extracellular vesicles carrying miRNAs in the bloodstream. PLoS One 10:e0125094. doi: 10.1371/journal.pone.0125094 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hausenloy DJ, Barrabes JA, Botker HE, Davidson SM, Di Lisa F, Downey J, Engstrom T, Ferdinandy P, Carbrera-Fuentes HA, Heusch G, Ibanez B, Iliodromitis EK, Inserte J, Jennings R, Kalia N, Kharbanda R, Lecour S, Marber M, Miura T, Ovize M, Perez-Pinzon MA, Piper HM, Przyklenk K, Schmidt MR, Redington A, Ruiz-Meana M, Vilahur G, Vinten-Johansen J, Yellon DM, Garcia-Dorado D (2016) Ischaemic conditioning and targeting reperfusion injury: a 30 year voyage of discovery. Basic Res Cardiol 111:70. doi: 10.1007/s00395-016-0588-8 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 61:448–460. doi: 10.1016/j.cardiores.2003.09.024 CrossRefPubMedGoogle Scholar
  24. 24.
    Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. doi: 10.1161/CIRCRESAHA.116.305348 CrossRefPubMedGoogle Scholar
  25. 25.
    JanssenDuijghuijsen LM, Keijer J, Mensink M, Lenaerts K, Ridder L, Nierkens S, Kartaram SW, Verschuren MC, Pieters RH, Bas R, Witkamp RF, Wichers HJ, van Norren K (2017) Adaptation of exercise-induced stress in well-trained healthy young men. Exp Physiol 102:86–99. doi: 10.1113/EP086025 CrossRefPubMedGoogle Scholar
  26. 26.
    Jeong JJ, Ha YM, Jin YC, Lee EJ, Kim JS, Kim HJ, Seo HG, Lee JH, Kang SS, Kim YS, Chang KC (2009) Rutin from Lonicera japonica inhibits myocardial ischemia/reperfusion-induced apoptosis in vivo and protects H9c2 cells against hydrogen peroxide-mediated injury via ERK1/2 and PI3K/Akt signals in vitro. Food Chem Toxicol 47:1569–1576. doi: 10.1016/j.fct.2009.03.044 CrossRefPubMedGoogle Scholar
  27. 27.
    Jiang X, Guo CX, Zeng XJ, Li HH, Chen BX, Du FH (2015) A soluble receptor for advanced glycation end-products inhibits myocardial apoptosis induced by ischemia/reperfusion via the JAK2/STAT3 pathway. Apoptosis 20:1033–1047. doi: 10.1007/s10495-015-1130-4 CrossRefPubMedGoogle Scholar
  28. 28.
    Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P, Mackie AR, Vaughan E, Garikipati VN, Benedict C, Ramirez V, Lambers E, Ito A, Gao E, Misener S, Luongo T, Elrod J, Qin G, Houser SR, Koch WJ, Kishore R (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117:52–64. doi: 10.1161/CIRCRESAHA.117.305990 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kleindienst A, Battault S, Belaidi E, Tanguy S, Rosselin M, Boulghobra D, Meyer G, Gayrard S, Walther G, Geny B, Durand G, Cazorla O, Reboul C (2016) Exercise does not activate the beta3 adrenergic receptor-eNOS pathway, but reduces inducible NOS expression to protect the heart of obese diabetic mice. Basic Res Cardiol 111:40. doi: 10.1007/s00395-016-0559-0 CrossRefPubMedGoogle Scholar
  30. 30.
    Kowal J, Tkach M, Thery C (2014) Biogenesis and secretion of exosomes. Curr Opin Cell Biol 29:116–125. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  31. 31.
    Li J, Zhang H, Zhang C (2012) Role of inflammation in the regulation of coronary blood flow in ischemia and reperfusion: mechanisms and therapeutic implications. J Mol Cell Cardiol 52:865–872. doi: 10.1016/j.yjmcc.2011.08.027 CrossRefPubMedGoogle Scholar
  32. 32.
    Little JP, Safdar A, Benton CR, Wright DC (2011) Skeletal muscle and beyond: the role of exercise as a mediator of systemic mitochondrial biogenesis. Appl Physiol Nutr Metab 36:598–607. doi: 10.1139/h11-076 CrossRefPubMedGoogle Scholar
  33. 33.
    Little JP, Safdar A, Bishop D, Tarnopolsky MA, Gibala MJ (2011) An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1alpha and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 300:R1303–R1310. doi: 10.1152/ajpregu.00538.2010 CrossRefPubMedGoogle Scholar
  34. 34.
    Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, Xiao C, Bezzerides V, Bostrom P, Che L, Zhang C, Spiegelman BM, Rosenzweig A (2015) miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab 21:584–595. doi: 10.1016/j.cmet.2015.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lombardi G, Sanchis-Gomar F, Perego S, Sansoni V, Banfi G (2016) Implications of exercise-induced adipo-myokines in bone metabolism. Endocrine 54:284–305. doi: 10.1007/s12020-015-0834-0 CrossRefPubMedGoogle Scholar
  36. 36.
    Malik ZA, Kott KS, Poe AJ, Kuo T, Chen L, Ferrara KW, Knowlton AA (2013) Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circ Physiol 304:H954–H965. doi: 10.1152/ajpheart.00835.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12:19–30. doi: 10.1038/ncb2000 (sup pp 11–13) CrossRefPubMedGoogle Scholar
  38. 38.
    Otani H (2009) The role of nitric oxide in myocardial repair and remodeling. Antioxid Redox Signal 11:1913–1928. doi: 10.1089/ARS.2009.2453 CrossRefPubMedGoogle Scholar
  39. 39.
    Ela S, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357. doi: 10.1038/nrd3978 CrossRefGoogle Scholar
  40. 40.
    Safdar A, Saleem A, Tarnopolsky MA (2016) The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 12:504–517. doi: 10.1038/nrendo.2016.76 CrossRefPubMedGoogle Scholar
  41. 41.
    Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW (2012) Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem 287:11968–11980. doi: 10.1074/jbc.M111.336834 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, Wang H, Xuan Q, Chen P, Xu J, Che L, Liu H, Zhong J, Sluijter JP, Li X, Rosenzweig A, Xiao J (2017) miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia–reperfusion injury. Theranostics 7:664–676. doi: 10.7150/thno.15162 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tao L, Bei Y, Lin S, Zhang H, Zhou Y, Jiang J, Chen P, Shen S, Xiao J, Li X (2015) Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis. Cell Physiol Biochem 37:162–175. doi: 10.1159/000430342 CrossRefPubMedGoogle Scholar
  44. 44.
    Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z (2015) mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem 37:2415–2424. doi: 10.1159/000438594 CrossRefPubMedGoogle Scholar
  45. 45.
    Terada K, Kaziro Y, Satoh T (2000) Analysis of Ras-dependent signals that prevent caspase-3 activation and apoptosis induced by cytokine deprivation in hematopoietic cells. Biochem Biophys Res Commun 267:449–455. doi: 10.1006/bbrc.1999.1955 CrossRefPubMedGoogle Scholar
  46. 46.
    Vicencio JM, Yellon DM, Sivaraman V, Das D, Boi-Doku C, Arjun S, Zheng Y, Riquelme JA, Kearney J, Sharma V, Multhoff G, Hall AR, Davidson SM (2015) Plasma exosomes protect the myocardium from ischemia–reperfusion injury. J Am Coll Cardiol 65:1525–1536. doi: 10.1016/j.jacc.2015.02.026 CrossRefPubMedGoogle Scholar
  47. 47.
    Wang Y, Zhang L, Li Y, Chen L, Wang X, Guo W, Zhang X, Qin G, He SH, Zimmerman A, Liu Y, Kim IM, Weintraub NL, Tang Y (2015) Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 192:61–69. doi: 10.1016/j.ijcard.2015.05.020 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Weston CR, Balmanno K, Chalmers C, Hadfield K, Molton SA, Ley R, Wagner EF, Cook SJ (2003) Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways. Oncogene 22:1281–1293. doi: 10.1038/sj.onc.1206261 CrossRefPubMedGoogle Scholar
  49. 49.
    Xu J, Tang Y, Bei Y, Ding S, Che L, Yao J, Wang H, Lv D, Xiao J (2016) miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget 7:10870–10878. doi: 10.18632/oncotarget.7678 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhang KR, Liu HT, Zhang HF, Zhang QJ, Li QX, Yu QJ, Guo WY, Wang HC, Gao F (2007) Long-term aerobic exercise protects the heart against ischemia/reperfusion injury via PI3 kinase-dependent and Akt-mediated mechanism. Apoptosis 12:1579–1588. doi: 10.1007/s10495-007-0090-8 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yihua Bei
    • 1
  • Tianzhao Xu
    • 1
  • Dongchao Lv
    • 1
  • Pujiao Yu
    • 2
  • Jiahong Xu
    • 2
  • Lin Che
    • 2
  • Avash Das
    • 3
  • John Tigges
    • 4
  • Vassilios Toxavidis
    • 4
  • Ionita Ghiran
    • 4
  • Ravi Shah
    • 3
  • Yongqin Li
    • 1
  • Yuhui Zhang
    • 5
  • Saumya Das
    • 3
  • Junjie Xiao
    • 1
    Email author
  1. 1.Cardiac Regeneration and Ageing Lab, School of Life ScienceShanghai UniversityShanghaiChina
  2. 2.Department of Cardiology, Tongji HospitalTongji University School of MedicineShanghaiChina
  3. 3.Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical SchoolBostonUSA
  4. 4.Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA
  5. 5.Heart Failure Care Unit, Fuwai Hospital, State Key Laboratory of Cardiovascular DiseaseNational Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina

Personalised recommendations