IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation

  • Mira Jung
  • Yonggang Ma
  • Rugmani Padmanabhan Iyer
  • Kristine Y. DeLeon-Pennell
  • Andriy Yabluchanskiy
  • Michael R. Garrett
  • Merry L. LindseyEmail author
Original Contribution


Inflammation resolution is important for scar formation following myocardial infarction (MI) and requires the coordinated actions of macrophages and fibroblasts. In this study, we hypothesized that exogenous interleukin-10 (IL-10), an anti-inflammatory cytokine, promotes post-MI repair through actions on these cardiac cell types. To test this hypothesis, C57BL/6J mice (male, 3- to 6-month old, n = 24/group) were treated with saline or IL-10 (50 μg/kg/day) by osmotic mini-pump infusion starting at day (d) 1 post-MI and sacrificed at d7 post-MI. IL-10 infusion doubled plasma IL-10 concentrations by d7 post-MI. Despite similar infarct areas and mortality rates, IL-10 treatment significantly decreased LV dilation (1.6-fold for end-systolic volume and 1.4-fold for end-diastolic volume) and improved ejection fraction 1.8-fold (both p < 0.05). IL-10 treatment attenuated inflammation at d7 post-MI, evidenced by decreased numbers of Mac-3-positive macrophages in the infarct (p < 0.05). LV macrophages isolated from d7 post-MI mice treated with IL-10 showed significantly elevated gene expression of M2 markers (Arg1, Ym1, and Tgfb1; all p < 0.05). We further performed RNA-seq analysis on post-MI cardiac macrophages and identified 410 significantly different genes (155 increased, 225 decreased by IL-10 treatment). By functional network analysis grouping, the majority of genes (133 out of 410) were part of the cellular assembly and repair functional group. Of these, hyaluronidase 3 (Hyal3) was the most important feature identified by p value. IL-10 treatment decreased Hyal3 by 28%, which reduced hyaluronan degradation and limited collagen deposition (all p < 0.05). In addition, in vivo IL-10 treatment increased fibroblast activation (proliferation, migration, and collagen production), an effect that was both directly and indirectly influenced by macrophage M2 polarization. Combined, our results indicate that in vivo infusion of IL-10 post-MI improves the LV microenvironment to dampen inflammation and facilitate cardiac wound healing.


IL-10 Macrophage Fibroblast Myocardial infarction Inflammation Collagen Hyaluronan 



Research reported in this publication was supported by the American Heart Association under Award Number 15SDG22930009, by the National Heart, Lung, and Blood Institute and the National Institute of General Medical Sciences of the National Institutes of Health under Award Numbers HL075360, HL129823, HL051971, GM104357, GM114833, GM103476, GM103328, and GM115428, and from the Biomedical Laboratory Research and Development Service of the Veterans Affairs Office of Research and Development under Award Number 5I01BX000505. The content is solely the responsibility of the authors and does not necessarily represent the official views of the American Heart Association, the National Institutes of Health, or the Veterans Administration.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Abe S, Steinmann BU, Wahl LM, Martin GR (1979) High cell density alters the ratio of type III to I collagen synthesis by fibroblasts. Nature 279:442–444. doi: 10.1038/279442a0 CrossRefPubMedGoogle Scholar
  2. 2.
    Balaji S, King A, Marsh E, LeSaint M, Bhattacharya SS, Han N, Dhamija Y, Ranjan R, Le LD, Bollyky PL, Crombleholme TM, Keswani SG (2015) The role of interleukin-10 and hyaluronan in murine fetal fibroblast function in vitro: implications for recapitulating fetal regenerative wound healing. PLoS One 10:e0124302. doi: 10.1371/journal.pone.0124302 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Beam J, Botta A, Ye J, Soliman H, Matier BJ, Forrest M, MacLeod KM, Ghosh S (2015) Excess linoleic acid increases collagen I/III ratio and “stiffens” the heart muscle following high fat diets. J Biol Chem 290:23371–23384. doi: 10.1074/jbc.M115.682195 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Berg DJ, Kuhn R, Rajewsky K, Muller W, Menon S, Davidson N, Grunig G, Rennick D (1995) Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J Clin Investig 96:2339–2347. doi: 10.1172/JCI118290 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Christia P, Bujak M, Gonzalez-Quesada C, Chen W, Dobaczewski M, Reddy A, Frangogiannis NG (2013) Systematic characterization of myocardial inflammation, repair, and remodeling in a mouse model of reperfused myocardial infarction. J Histochem Cytochem 61:555–570. doi: 10.1369/0022155413493912 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cobos Jimenez V, Bradley EJ, Willemsen AM, van Kampen AH, Baas F, Kootstra NA (2014) Next-generation sequencing of microRNAs uncovers expression signatures in polarized macrophages. Physiol Genomics 46:91–103. doi: 10.1152/physiolgenomics.00140.2013 CrossRefPubMedGoogle Scholar
  7. 7.
    de Couto G, Liu W, Tseliou E, Sun B, Makkar N, Kanazawa H, Arditi M, Marban E (2015) Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J Clin Investig 125:3147–3162. doi: 10.1172/JCI81321 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    de Sa VK, Olivieri E, Parra ER, Ab’Saber AM, Takagaki T, Soares FA, Carraro D, Carvalho L, Capelozzi VL (2012) Hyaluronidase splice variants are associated with histology and outcome in adenocarcinoma and squamous cell carcinoma of the lung. Hum Pathol 43:675–683. doi: 10.1016/j.humpath.2011.06.010 CrossRefPubMedGoogle Scholar
  9. 9.
    Dominguez Rodriguez A, Abreu Gonzalez P, Garcia Gonzalez MJ, Ferrer Hita J (2005) Association between serum interleukin 10 level and development of heart failure in acute myocardial infarction patients treated by primary angioplasty. Rev Esp Cardiol (Engl Ed) 58:626–630. doi: 10.1016/S1885-5857(06)60248-X CrossRefGoogle Scholar
  10. 10.
    Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58:88–111. doi: 10.1016/j.phrs.2008.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Frangogiannis NG (2015) Inflammation in cardiac injury, repair and regeneration. Curr Opin Cardiol 30:240–245. doi: 10.1097/HCO.0000000000000158 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110:159–173. doi: 10.1161/CIRCRESAHA.111.243162 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Frangogiannis NG (2006) Targeting the inflammatory response in healing myocardial infarcts. Curr Med Chem 13:1877–1893. doi: 10.2174/092986706777585086 CrossRefPubMedGoogle Scholar
  14. 14.
    Frangogiannis NG, Mendoza LH, Lindsey ML, Ballantyne CM, Michael LH, Smith CW, Entman ML (2000) IL-10 is induced in the reperfused myocardium and may modulate the reaction to injury. J Immunol 165:2798–2808. doi: 10.4049/jimmunol.165.5.2798 CrossRefPubMedGoogle Scholar
  15. 15.
    Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47. doi: 10.1016/S0008-6363(01)00434-5 CrossRefPubMedGoogle Scholar
  16. 16.
    Goggins JF, Lazarus GS, Fullmer HM (1968) Hyaluronidase activity of alveolar macrophages. J Histochem Cytochem 16:688–692. doi: 10.1177/16.11.688 CrossRefPubMedGoogle Scholar
  17. 17.
    Goldberg MT, Han YP, Yan C, Shaw MC, Garner WL (2007) TNF-alpha suppresses alpha-smooth muscle actin expression in human dermal fibroblasts: an implication for abnormal wound healing. J Investig Dermatol 127:2645–2655. doi: 10.1038/sj.jid.5700890 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hasan AS, Luo L, Yan C, Zhang TX, Urata Y, Goto S, Mangoura SA, Abdel-Raheem MH, Zhang S, Li TS (2016) Cardiosphere-derived cells facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment. PLoS One 11:e0165255. doi: 10.1371/journal.pone.0165255 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Heidt T, Courties G, Dutta P, Sager HB, Sebas M, Iwamoto Y, Sun Y, Da Silva N, Panizzi P, van der Laan AM, Swirski FK, Weissleder R, Nahrendorf M (2014) Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res 115:284–295. doi: 10.1161/CIRCRESAHA.115.303567 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ismahil MA, Hamid T, Bansal SS, Patel B, Kingery JR, Prabhu SD (2014) Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ Res 114:266–282. doi: 10.1161/CIRCRESAHA.113.301720 CrossRefPubMedGoogle Scholar
  21. 21.
    Italiani P, Boraschi D (2014) From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation. Front Immunol 5:514. doi: 10.3389/fimmu.2014.00514 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Iyer RP, de Castro Bras LE, Cannon PL, Ma Y, DeLeon-Pennell KY, Jung M, Flynn ER, Henry JB, Bratton DR, White JA, Fulton LK, Grady AW, Lindsey ML (2016) Defining the sham environment for post-myocardial infarction studies in mice. Am J Physiol Heart Circ Physiol 311:H822–H836. doi: 10.1152/ajpheart.00067.2016 CrossRefPubMedGoogle Scholar
  23. 23.
    Iyer RP, Patterson NL, Zouein FA, Ma Y, Dive V, de Castro Bras LE, Lindsey ML (2015) Early matrix metalloproteinase-12 inhibition worsens post-myocardial infarction cardiac dysfunction by delaying inflammation resolution. Int J Cardiol 185:198–208. doi: 10.1016/j.ijcard.2015.03.054 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kim Y, Kumar S (2014) CD44-mediated adhesion to hyaluronic acid contributes to mechanosensing and invasive motility. Mol Cancer Res 12:1416–1429. doi: 10.1158/1541-7786.MCR-13-0629 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Krishnamurthy P, Rajasingh J, Lambers E, Qin G, Losordo DW, Kishore R (2009) IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT3 and suppression of HuR. Circ Res 104:e9–18. doi: 10.1161/CIRCRESAHA.108.188243 CrossRefPubMedGoogle Scholar
  26. 26.
    Lambert JM, Lopez EF, Lindsey ML (2008) Macrophage roles following myocardial infarction. Int J Cardiol 130:147–158. doi: 10.1016/j.ijcard.2008.04.059 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lindsey ML, Iyer RP, Zamilpa R, Yabluchanskiy A, DeLeon-Pennell KY, Hall ME, Kaplan A, Zouein FA, Bratton D, Flynn ER, Cannon PL, Tian Y, Jin YF, Lange RA, Tokmina-Roszyk D, Fields GB, de Castro Bras LE (2015) A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J Am Coll Cardiol 66:1364–1374. doi: 10.1016/j.jacc.2015.07.035 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lindsey ML, Saucerman JJ, DeLeon-Pennell KY (2016) Knowledge gaps to understanding cardiac macrophage polarization following myocardial infarction. Biochim Biophys Acta 1862:2288–2292. doi: 10.1016/j.bbadis.2016.05.013 CrossRefPubMedGoogle Scholar
  29. 29.
    Liu GW, Livesay BR, Kacherovsky NA, Cieslewicz M, Lutz E, Waalkes A, Jensen MC, Salipante SJ, Pun SH (2015) Efficient identification of murine M2 macrophage peptide targeting ligands by phage display and next-generation sequencing. Bioconjug Chem 26:1811–1817. doi: 10.1021/acs.bioconjchem.5b00344 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ma Y, Chiao YA, Clark R, Flynn ER, Yabluchanskiy A, Ghasemi O, Zouein F, Lindsey ML, Jin YF (2015) Deriving a cardiac ageing signature to reveal MMP-9-dependent inflammatory signalling in senescence. Cardiovasc Res 106:421–431. doi: 10.1093/cvr/cvv128 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ma Y, de Castro Bras LE, Toba H, Iyer RP, Hall ME, Winniford MD, Lange RA, Tyagi SC, Lindsey ML (2014) Myofibroblasts and the extracellular matrix network in post-myocardial infarction cardiac remodeling. Pflugers Arch 466:1113–1127. doi: 10.1007/s00424-014-1463-9 PubMedPubMedCentralGoogle Scholar
  32. 32.
    Ma Y, Halade GV, Lindsey ML (2012) Extracellular matrix and fibroblast communication following myocardial infarction. J Cardiovasc Transl Res 5:848–857. doi: 10.1007/s12265-012-9398-z CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Martin P, Leibovich SJ (2005) Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15:599–607. doi: 10.1016/j.tcb.2005.09.002 CrossRefPubMedGoogle Scholar
  34. 34.
    Murray PJ, Wynn TA (2011) Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol 89:557–563. doi: 10.1189/jlb.0710409 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nahrendorf M, Pittet MJ, Swirski FK (2010) Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation 121:2437–2445. doi: 10.1161/CIRCULATIONAHA.109.916346 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nahrendorf M, Wiesmann F, Hiller KH, Hu K, Waller C, Ruff J, Lanz TE, Neubauer S, Haase A, Ertl G, Bauer WR (2001) Serial cine-magnetic resonance imaging of left ventricular remodeling after myocardial infarction in rats. J Magn Reson Imaging 14:547–555. doi: 10.1002/jmri.1218 CrossRefPubMedGoogle Scholar
  37. 37.
    Nian M, Lee P, Khaper N, Liu P (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94:1543–1553. doi: 10.1161/01.RES.0000130526.20854.fa CrossRefPubMedGoogle Scholar
  38. 38.
    Ocuin LM, Bamboat ZM, Balachandran VP, Cavnar MJ, Obaid H, Plitas G, DeMatteo RP (2011) Neutrophil IL-10 suppresses peritoneal inflammatory monocytes during polymicrobial sepsis. J Leukoc Biol 89:423–432. doi: 10.1189/jlb.0810479 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Papakonstantinou E, Roth M, Karakiulakis G (2012) Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinology 4:253–258. doi: 10.4161/derm.21923 CrossRefGoogle Scholar
  40. 40.
    Pauschinger M, Knopf D, Petschauer S, Doerner A, Poller W, Schwimmbeck PL, Kuhl U, Schultheiss HP (1999) Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation 99:2750–2756. doi: 10.1161/01.CIR.99.21.2750 CrossRefPubMedGoogle Scholar
  41. 41.
    Perretti M, Szabo C, Thiemermann C (1995) Effect of interleukin-4 and interleukin-10 on leucocyte migration and nitric oxide production in the mouse. Br J Pharmacol 116:2251–2257. doi: 10.1111/j.1476-5381.1995.tb15061.x CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Pinto AR, Godwin JW, Rosenthal NA (2014) Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation. Stem Cell Res 13:705–714. doi: 10.1016/j.scr.2014.06.004 CrossRefPubMedGoogle Scholar
  43. 43.
    Ploeger DT, Hosper NA, Schipper M, Koerts JA, de Rond S, Bank RA (2013) Cell plasticity in wound healing: paracrine factors of M1/M2 polarized macrophages influence the phenotypical state of dermal fibroblasts. Cell Commun Signal 11:29. doi: 10.1186/1478-811X-11-29 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rayahin JE, Buhrman JS, Zhang Y, Koh TJ, Gemeinhart RA (2015) High and low molecular weight hyaluronic acid differentially influence macrophage activation. ACS Biomater Sci Eng 1:481–493. doi: 10.1021/acsbiomaterials.5b00181 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Redden RA, Doolin EJ (2003) Collagen crosslinking and cell density have distinct effects on fibroblast-mediated contraction of collagen gels. Skin Res Technol 9:290–293. doi: 10.1034/j.1600-0846.2003.00023.x CrossRefPubMedGoogle Scholar
  46. 46.
    Robinson E, Cassidy RS, Tate M, Zhao Y, Lockhart S, Calderwood D, Church R, McGahon MK, Brazil DP, McDermott BJ, Green BD, Grieve DJ (2015) Exendin-4 protects against post-myocardial infarction remodelling via specific actions on inflammation and the extracellular matrix. Basic Res Cardiol 110:20. doi: 10.1007/s00395-015-0476-7 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Rolfe KJ, Grobbelaar AO (2012) A review of fetal scarless healing. ISRN Dermatol 2012:698034. doi: 10.5402/2012/698034 PubMedPubMedCentralGoogle Scholar
  48. 48.
    Salto-Tellez M, Lim YS, El-Oakley RM, Tang TPM, ALmsherqi ZAM, Lim SK (2004) Myocardial infarction in the C57BL/6J mouse: a quantifiable and highly reproducible experimental model. Cardiovasc Pathol 13:91–97. doi: 10.1016/S1054-8807(03)00129-7 CrossRefPubMedGoogle Scholar
  49. 49.
    Sikka G, Miller KL, Steppan J, Pandey D, Jung SM, Fraser CD 3rd, Ellis C, Ross D, Vandegaer K, Bedja D, Gabrielson K, Walston JD, Berkowitz DE, Barouch LA (2013) Interleukin 10 knockout frail mice develop cardiac and vascular dysfunction with increased age. Exp Gerontol 48:128–135. doi: 10.1016/j.exger.2012.11.001 CrossRefPubMedGoogle Scholar
  50. 50.
    Stack EC, Foukas PG, Lee PP (2016) Multiplexed tissue biomarker imaging. J Immunother Cancer 4:9. doi: 10.1186/s40425-016-0115-3 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    ter Horst EN, Hakimzadeh N, van der Laan AM, Krijnen PA, Niessen HW, Piek JJ (2015) Modulators of macrophage polarization influence healing of the infarcted myocardium. Int J Mol Sci 16:29583–29591. doi: 10.3390/ijms161226187 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Turillazzi E, Di Paolo M, Neri M, Riezzo I, Fineschi V (2014) A theoretical timeline for myocardial infarction: immunohistochemical evaluation and western blot quantification for Interleukin-15 and Monocyte chemotactic protein-1 as very early markers. J Transl Med 12:188. doi: 10.1186/1479-5876-12-188 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76:44–51. doi: 10.1161/01.CIR.76.1.44 CrossRefPubMedGoogle Scholar
  54. 54.
    Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30:245–257. doi: 10.1055/s-0030-1255354 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Xia H, Diebold D, Nho R, Perlman D, Kleidon J, Kahm J, Avdulov S, Peterson M, Nerva J, Bitterman P, Henke C (2008) Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Exp Med 205:1659–1672. doi: 10.1084/jem.20080001 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Yang Z, Zingarelli B, Szabo C (2000) Crucial role of endogenous interleukin-10 production in myocardial ischemia/reperfusion injury. Circulation 101:1019–1026. doi: 10.1161/01.CIR.101.9.1019 CrossRefPubMedGoogle Scholar
  57. 57.
    Yao L, Huang K, Huang D, Wang J, Guo H, Liao Y (2008) Acute myocardial infarction induced increases in plasma tumor necrosis factor-alpha and interleukin-10 are associated with the activation of poly(ADP-ribose) polymerase of circulating mononuclear cell. Int J Cardiol 123:366–368. doi: 10.1016/j.ijcard.2007.06.069 CrossRefPubMedGoogle Scholar
  58. 58.
    Zamilpa R, Ibarra J, de Castro Bras LE, Ramirez TA, Nguyen N, Halade GV, Zhang J, Dai Q, Dayah T, Chiao YA, Lowell W, Ahuja SS, D’Armiento J, Jin YF, Lindsey ML (2012) Transgenic overexpression of matrix metalloproteinase-9 in macrophages attenuates the inflammatory response and improves left ventricular function post-myocardial infarction. J Mol Cell Cardiol 53:599–608. doi: 10.1016/j.yjmcc.2012.07.017 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zamilpa R, Zhang J, Chiao YA, de Castro Bras LE, Halade GV, Ma Y, Hacker SO, Lindsey ML (2013) Cardiac wound healing post-myocardial infarction: a novel method to target extracellular matrix remodeling in the left ventricle. Methods Mol Biol 1037:313–324. doi: 10.1007/978-1-62703-505-7_18 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Zheng JL, Helbig C, Gao WQ (1997) Induction of cell proliferation by fibroblast and insulin-like growth factors in pure rat inner ear epithelial cell cultures. J Neurosci 17:216–226. doi: 10.1073/pnas.92.8.3152 PubMedGoogle Scholar
  61. 61.
    Zymek P, Nah DY, Bujak M, Ren G, Koerting A, Leucker T, Huebener P, Taffet G, Entman M, Frangogiannis NG (2007) Interleukin-10 is not a critical regulator of infarct healing and left ventricular remodeling. Cardiovasc Res 74:313–322. doi: 10.1016/j.cardiores.2006.11.028 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Physiology and Biophysics, Mississippi Center for Heart ResearchUniversity of Mississippi Medical CenterJacksonUSA
  2. 2.Donald W. Reynolds Department of Geriatric Medicine, Reynolds Oklahoma Center on AgingUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  3. 3.Department of Pharmacology and ToxicologyUMMCJacksonUSA
  4. 4.Research ServiceG.V. (Sonny) Montgomery Veterans Affairs Medical CenterJacksonUSA

Personalised recommendations