SUV39H1 mediated SIRT1 trans-repression contributes to cardiac ischemia–reperfusion injury

  • Guang Yang
  • Xinjian Zhang
  • Xinyu Weng
  • Peng Liang
  • Xin Dai
  • Sheng Zeng
  • Huihui Xu
  • Hailin Huan
  • Mingming Fang
  • Yuehua Li
  • Dachun XuEmail author
  • Yong XuEmail author
Original Contribution


Ischemic reperfusion (I/R) contributes to deleterious cardiac remodeling and heart failure. The deacetylase SIRT1 has been shown to protect the heart from I/R injury. We examined the mechanism whereby I/R injury represses SIRT1 transcription in the myocardium. There was accumulation of trimethylated histone H3K9 on the proximal SIRT1 promoter in the myocardium in mice following I/R injury and in cultured cardiomyocytes exposed to hypoxia–reoxygenation (H/R). In accordance, the H3K9 trimethyltransferase SUV39H1 bound to the SIRT1 promoter and repressed SIRT1 transcription. SUV39H1 expression was up-regulated in the myocardium in mice following I/R insults and in H/R-treated cardiomyocytes paralleling SIRT1 down-regulation. Silencing SUV39H1 expression or suppression of SUV39H1 activity erased H3K9Me3 from the SIRT1 promoter and normalized SIRT1 levels in cardiomyocytes. Meanwhile, SUV39H1 deficiency or inhibition attenuated I/R-induced infarction and improved heart function in mice likely through influencing ROS levels in a SIRT1-dependent manner. Therefore, our data uncover a novel mechanism for SIRT1 trans-repression during cardiac I/R injury and present SUV39H1 as a druggable target for the development of therapeutic strategies against ischemic heart disease.


Epigenetics Ischemia–reperfusion injury SIRT1 SUV39H1 Transcriptional regulation 



This work was supported, in part, by grants from the Natural Science Foundation of China (91439106, 81670223, 81470418, 81270194, and 81270292), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). HLH was supported by an intramural grant (CX135040) from Jiangsu Agriculture Science and Technology Innovation Fund. YX and YHL are Fellows at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine.

Compliance with ethical standards

Conflict of interest


Supplementary material

395_2017_608_MOESM1_ESM.doc (13.7 mb)
Supplementary material 1 (DOC 14078 kb)


  1. 1.
    Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT, Roche D, Maison C, Quivy JP, Almouzni G, Amigorena S (2012) An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature 487:249–253. doi: 10.1038/nature11173 CrossRefPubMedGoogle Scholar
  2. 2.
    Bulut-Karslioglu A, De La Rosa-Velazquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M, Arand J, Galan C, Winter GE, Engist B, Gerle B, O’Sullivan RJ, Martens JH, Walter J, Manke T, Lachner M, Jenuwein T (2014) Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol Cell 55:277–290. doi: 10.1016/j.molcel.2014.05.029 CrossRefPubMedGoogle Scholar
  3. 3.
    Bulut-Karslioglu A, Perrera V, Scaranaro M, de la Rosa-Velazquez IA, van de Nobelen S, Shukeir N, Popow J, Gerle B, Opravil S, Pagani M, Meidhof S, Brabletz T, Manke T, Lachner M, Jenuwein T (2012) A transcription factor-based mechanism for mouse heterochromatin formation. Nat Struct Mol Biol 19:1023–1030. doi: 10.1038/nsmb.2382 CrossRefPubMedGoogle Scholar
  4. 4.
    Cao Z, Hu Y, Wu W, Ha T, Kelley J, Deng C, Chen Q, Li C, Li J, Li Y (2009) The TIR/BB-loop mimetic AS-1 protects the myocardium from ischaemia/reperfusion injury. Cardiovasc Res 84:442–451. doi: 10.1093/cvr/cvp234 CrossRefPubMedGoogle Scholar
  5. 5.
    Chaib H, Nebbioso A, Prebet T, Castellano R, Garbit S, Restouin A, Vey N, Altucci L, Collette Y (2012) Anti-leukemia activity of chaetocin via death receptor-dependent apoptosis and dual modulation of the histone methyl-transferase SUV39H1. Leukemia 26:662–674. doi: 10.1038/leu.2011.271 CrossRefPubMedGoogle Scholar
  6. 6.
    Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB (2005) Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123:437–448. doi: 10.1016/j.cell.2005.08.011 CrossRefPubMedGoogle Scholar
  7. 7.
    Fang M, Fan Z, Tian W, Zhao Y, Li P, Xu H, Zhou B, Zhang L, Wu X, Xu Y (2016) HDAC4 mediates IFN-gamma induced disruption of energy expenditure-related gene expression by repressing SIRT1 transcription in skeletal muscle cells. Biochim Biophys Acta 1859:294–305. doi: 10.1016/j.bbagrm.2015.11.010 CrossRefPubMedGoogle Scholar
  8. 8.
    Fang M, Kong X, Li P, Fang F, Wu X, Bai H, Qi X, Chen Q, Xu Y (2009) RFXB and its splice variant RFXBSV mediate the antagonism between IFNgamma and TGFbeta on COL1A2 transcription in vascular smooth muscle cells. Nucleic Acids Res 37:4393–4406. doi: 10.1093/nar/gkp398 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A (2005) Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 1:143–145. doi: 10.1038/nchembio721 CrossRefPubMedGoogle Scholar
  10. 10.
    Hausenloy DJ, Yellon DM (2015) Targeting myocardial reperfusion injury—the search continues. N Engl J Med 373:1073–1075. doi: 10.1056/NEJMe1509718 CrossRefPubMedGoogle Scholar
  11. 11.
    Hess ML, Manson NH (1984) Molecular oxygen: friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. J Mol Cell Cardiol 16:969–985. doi: 10.1016/S0022-2828(84)80011-5 CrossRefPubMedGoogle Scholar
  12. 12.
    Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. doi: 10.1161/CIRCRESAHA.116.305348 CrossRefPubMedGoogle Scholar
  13. 13.
    Heusch G, Gersh BJ (2016) The pathophysiology of acute myocardial infarction and strategies of protection beyond reperfusion: a continual challenge. Eur Heart J. doi: 10.1093/eurheartj/ehw224 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Heusch G, Rassaf T (2016) Time to give up on cardioprotection? A critical appraisal of clinical studies on ischemic pre-, post-, and remote conditioning. Circ Res 119:676–695. doi: 10.1161/CIRCRESAHA.116.308736 CrossRefPubMedGoogle Scholar
  15. 15.
    Hohl M, Wagner M, Reil JC, Muller SA, Tauchnitz M, Zimmer AM, Lehmann LH, Thiel G, Bohm M, Backs J, Maack C (2013) HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 123:1359–1370. doi: 10.1172/JCI61084 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S, Sadoshima J (2010) Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122:2170–2182. doi: 10.1161/CIRCULATIONAHA.110.958033 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hunter RG, Murakami G, Dewell S, Seligsohn M, Baker ME, Datson NA, McEwen BS, Pfaff DW (2012) Acute stress and hippocampal histone H3 lysine 9 trimethylation, a retrotransposon silencing response. Proc Natl Acad Sci USA 109:17657–17662. doi: 10.1073/pnas.1215810109 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ii M, Nishimura H, Iwakura A, Wecker A, Eaton E, Asahara T, Losordo DW (2005) Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation 111:1114–1120. doi: 10.1161/01.CIR.0000157144.24888.7E CrossRefPubMedGoogle Scholar
  19. 19.
    Jin J, Iakova P, Jiang Y, Medrano EE, Timchenko NA (2011) The reduction of SIRT1 in livers of old mice leads to impaired body homeostasis and to inhibition of liver proliferation. Hepatology 54:989–998. doi: 10.1002/hep.24471 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kaminski KA, Bonda TA, Korecki J, Musial WJ (2002) Oxidative stress and neutrophil activation—the two keystones of ischemia/reperfusion injury. Int J Cardiol 86:41–59. doi: 10.1016/S0167-5273(02)00189-4 CrossRefPubMedGoogle Scholar
  21. 21.
    Lakshmikuttyamma A, Scott SA, DeCoteau JF, Geyer CR (2010) Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene 29:576–588. doi: 10.1038/onc.2009.361 CrossRefPubMedGoogle Scholar
  22. 22.
    Lee YM, Lim JH, Yoon H, Chun YS, Park JW (2011) Antihepatoma activity of chaetocin due to deregulated splicing of hypoxia-inducible factor 1 alpha pre-mRNA in mice and in vitro. Hepatology 53:171–180. doi: 10.1002/hep.24010 CrossRefPubMedGoogle Scholar
  23. 23.
    Liu J, Magri L, Zhang F, Marsh NO, Albrecht S, Huynh JL, Kaur J, Kuhlmann T, Zhang W, Slesinger PA, Casaccia P (2015) Chromatin landscape defined by repressive histone methylation during oligodendrocyte differentiation. J Neurosci 35:352–365. doi: 10.1523/JNEUROSCI.2606-14.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lomberk G, Mathison AJ, Grzenda A, Seo S, DeMars CJ, Rizvi S, Bonilla-Velez J, Calvo E, Fernandez-Zapico ME, Iovanna J, Buttar NS, Urrutia R (2012) Sequence-specific recruitment of heterochromatin protein 1 via interaction with Kruppel-like factor 11, a human transcription factor involved in tumor suppression and metabolic diseases. J Biol Chem 287:13026–13039. doi: 10.1074/jbc.M112.342634 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mariani J, Ou R, Bailey M, Rowland M, Nagley P, Rosenfeldt F, Pepe S (2000) Tolerance to ischemia and hypoxia is reduced in aged human myocardium. J Thorac Cardiovasc Surg 120:660–667. doi: 10.1067/mtc.2000.106528 CrossRefPubMedGoogle Scholar
  26. 26.
    Moens AL, Champion HC, Claeys MJ, Tavazzi B, Kaminski PM, Wolin MS, Borgonjon DJ, Van Nassauw L, Haile A, Zviman M, Bedja D, Wuyts FL, Elsaesser RS, Cos P, Gabrielson KL, Lazzarino G, Paolocci N, Timmermans JP, Vrints CJ, Kass DA (2008) High-dose folic acid pretreatment blunts cardiac dysfunction during ischemia coupled to maintenance of high-energy phosphates and reduces postreperfusion injury. Circulation 117:1810–1819. doi: 10.1161/CIRCULATIONAHA.107.725481 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Muller-Ott K, Erdel F, Matveeva A, Mallm JP, Rademacher A, Hahn M, Bauer C, Zhang Q, Kaltofen S, Schotta G, Hofer T, Rippe K (2014) Specificity, propagation, and memory of pericentric heterochromatin. Mol Syst Biol 10:746. doi: 10.15252/msb.20145377 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Muller WA (2009) Mechanisms of transendothelial migration of leukocytes. Circ Res 105:223–230. doi: 10.1161/CIRCRESAHA.109.200717 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Olcina MM, Leszczynska KB, Senra JM, Isa NF, Harada H, Hammond EM (2016) H3K9me3 facilitates hypoxia-induced p53-dependent apoptosis through repression of APAK. Oncogene 35:793–799. doi: 10.1038/onc.2015.134 CrossRefPubMedGoogle Scholar
  30. 30.
    Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, Cahan P, Marcarci BO, Unternaehrer J, Gupta PB, Lander ES, Armstrong SA, Daley GQ (2012) Chromatin-modifying enzymes as modulators of reprogramming. Nature 483:598–602. doi: 10.1038/nature10953 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39 h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337. doi: 10.1016/S0092-8674(01)00542-6 CrossRefPubMedGoogle Scholar
  32. 32.
    Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M (2014) Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 114:1601–1610. doi: 10.1161/CIRCRESAHA.114.303822 CrossRefPubMedGoogle Scholar
  33. 33.
    Roth GA, Huffman MD, Moran AE, Feigin V, Mensah GA, Naghavi M, Murray CJ (2015) Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation 132:1667–1678. doi: 10.1161/CIRCULATIONAHA.114.008720 CrossRefPubMedGoogle Scholar
  34. 34.
    Schweizer S, Harms C, Lerch H, Flynn J, Hecht J, Yildirim F, Meisel A, Marschenz S (2015) Inhibition of histone methyltransferases SUV39H1 and G9a leads to neuroprotection in an in vitro model of cerebral ischemia. J Cereb Blood Flow Metab 35:1640–1647. doi: 10.1038/jcbfm.2015.99 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Snigdha S, Prieto GA, Petrosyan A, Loertscher BM, Dieskau AP, Overman LE, Cotman CW (2016) H3K9me3 inhibition improves memory, promotes spine formation, and increases BDNF levels in the aged hippocampus. J Neurosci 36:3611–3622. doi: 10.1523/JNEUROSCI.2693-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sun L, Li H, Chen J, Dehennaut V, Zhao Y, Yang Y, Iwasaki Y, Kahn-Perles B, Leprince D, Chen Q, Shen A, Xu Y (2013) A SUMOylation-dependent pathway regulates SIRT1 transcription and lung cancer metastasis. J Nat Cancer Inst 105:887–898. doi: 10.1093/jnci/djt118 CrossRefPubMedGoogle Scholar
  37. 37.
    Sun L, Li H, Chen J, Iwasaki Y, Kubota T, Matsuoka M, Shen A, Chen Q, Xu Y (2013) PIASy mediates hypoxia-induced SIRT1 transcriptional repression and epithelial-to-mesenchymal transition in ovarian cancer cells. J Cell Sci 126:3939–3947. doi: 10.1242/jcs.127381 CrossRefPubMedGoogle Scholar
  38. 38.
    Tanaka M, Mokhtari GK, Terry RD, Balsam LB, Lee KH, Kofidis T, Tsao PS, Robbins RC (2004) Overexpression of human copper/zinc superoxide dismutase (SOD1) suppresses ischemia–reperfusion injury and subsequent development of graft coronary artery disease in murine cardiac grafts. Circulation 110:II200–II206. doi: 10.1161/01.CIR.0000138390.81640.54 PubMedGoogle Scholar
  39. 39.
    Vander Heide RS, Steenbergen C (2013) Cardioprotection and myocardial reperfusion: pitfalls to clinical application. Circ Res 113:464–477. doi: 10.1161/CIRCRESAHA.113.300765 CrossRefPubMedGoogle Scholar
  40. 40.
    Vaute O, Nicolas E, Vandel L, Trouche D (2002) Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res 30:475–481. doi: 10.1093/nar/gkq914 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159CrossRefPubMedGoogle Scholar
  42. 42.
    Vogel B, Shinagawa H, Hofmann U, Ertl G, Frantz S (2015) Acute DNase1 treatment improves left ventricular remodeling after myocardial infarction by disruption of free chromatin. Basic Res Cardiol 110:15. doi: 10.1007/s00395-015-0472-y CrossRefPubMedGoogle Scholar
  43. 43.
    Watson GW, Wickramasekara S, Palomera-Sanchez Z, Black C, Maier CS, Williams DE, Dashwood RH, Ho E (2014) SUV39H1/H3K9me3 attenuates sulforaphane-induced apoptotic signaling in PC3 prostate cancer cells. Oncogenesis 3:e131. doi: 10.1038/oncsis.2014.47 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wu W, Hu Y, Li J, Zhu W, Ha T, Que L, Liu L, Zhu Q, Chen Q, Xu Y, Li C, Li Y (2014) Silencing of Pellino1 improves post-infarct cardiac dysfunction and attenuates left ventricular remodelling in mice. Cardiovasc Res 102:46–55. doi: 10.1093/cvr/cvu007 CrossRefPubMedGoogle Scholar
  45. 45.
    Xiong Q, Ye L, Zhang P, Lepley M, Tian J, Li J, Zhang L, Swingen C, Vaughan JT, Kaufman DS, Zhang J (2013) Functional consequences of human induced pluripotent stem cell therapy: myocardial ATP turnover rate in the in vivo swine heart with postinfarction remodeling. Circulation 127:997–1008. doi: 10.1161/CIRCULATIONAHA.112.000641 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yang Y, Duan W, Li Y, Jin Z, Yan J, Yu S, Yi D (2013) Novel role of silent information regulator 1 in myocardial ischemia. Circulation 128:2232–2240. doi: 10.1161/CIRCULATIONAHA.113.002480 CrossRefPubMedGoogle Scholar
  47. 47.
    Yang YJ, Song TY, Park J, Lee J, Lim J, Jang H, Kim YN, Yang JH, Song Y, Choi A, Lee HY, Jo CH, Han JW, Kim ST, Youn HD, Cho EJ (2013) Menin mediates epigenetic regulation via histone H3 lysine 9 methylation. Cell Death Dis 4:e583. doi: 10.1038/cddis.2013.98 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yellon DM, Baxter GF (2000) Protecting the ischaemic and reperfused myocardium in acute myocardial infarction: distant dream or near reality? Heart 83:381–387. doi: 10.1136/heart.83.4.381 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135. doi: 10.1056/NEJMra071667 CrossRefPubMedGoogle Scholar
  50. 50.
    Yu L, Yang G, Weng X, Liang P, Li L, Li J, Fan Z, Tian W, Wu X, Xu H, Fang M, Ji Y, Li Y, Chen Q, Xu Y (2015) Histone methyltransferase SET1 mediates angiotensin II-induced endothelin-1 transcription and cardiac hypertrophy in mice. Arterioscler Thromb Vasc Biol 35:1207–1217. doi: 10.1161/ATVBAHA.115.305230 CrossRefPubMedGoogle Scholar
  51. 51.
    Zhang CL, McKinsey TA, Olson EN (2002) Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol 22:7302–7312. doi: 10.1128/MCB.22.20.7302-7312.2002 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Guang Yang
    • 1
  • Xinjian Zhang
    • 1
  • Xinyu Weng
    • 2
  • Peng Liang
    • 1
  • Xin Dai
    • 1
  • Sheng Zeng
    • 1
  • Huihui Xu
    • 1
  • Hailin Huan
    • 3
  • Mingming Fang
    • 1
  • Yuehua Li
    • 1
  • Dachun Xu
    • 1
    • 4
    Email author
  • Yong Xu
    • 1
    Email author
  1. 1.Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of PathophysiologyNanjing Medical UniversityNanjingChina
  2. 2.Shanghai Institute of Cardiovascular Disease, Zhongshan HospitalFudan UniversityShanghaiChina
  3. 3.Institute of Animal ScienceJiangsu Academy of Agricultural SciencesNanjingChina
  4. 4.Department of Cardiology, Shanghai Tenth People’s HospitalTongji University School of MedicineShanghaiChina

Personalised recommendations