Identification of cardiovascular risk factors associated with bone marrow cell subsets in patients with STEMI: a biorepository evaluation from the CCTRN TIME and LateTIME clinical trials

  • Ariadna Contreras
  • Aaron F. Orozco
  • Micheline Resende
  • Robert C. Schutt
  • Jay H. Traverse
  • Timothy D. Henry
  • Dejian Lai
  • John P. Cooke
  • Roberto Bolli
  • Michelle L. Cohen
  • Lem Moyé
  • Carl J. Pepine
  • Phillip C. Yang
  • Emerson C. Perin
  • James T. Willerson
  • Doris A. Taylor
  • For the Cardiovascular Cell Therapy Research Network (CCTRN)
Original Contribution


Autologous bone marrow mononuclear cell (BM-MNC) therapy for patients with ST-segment elevation myocardial infarction (STEMI) has produced inconsistent results, possibly due to BM-MNC product heterogeneity. Patient-specific cardiovascular risk factors (CRFs) may contribute to variations in BM-MNC composition. We sought to identify associations between BM-MNC subset frequencies and specific CRFs in STEMI patients. Bone marrow was collected from 191 STEMI patients enrolled in the CCTRN TIME and LateTIME trials. Relationships between BM-MNC subsets and CRFs were determined with multivariate analyses. An assessment of CRFs showed that hyperlipidemia and hypertension were associated with a higher frequency of CD11b+ cells (P = 0.045 and P = 0.016, respectively). In addition, we found that females had lower frequencies of CD11b+ (P = 0.018) and CD45+CD14+ (P = 0.028) cells than males, age was inversely associated with the frequency of CD45+CD31+ cells (P = 0.001), smoking was associated with a decreased frequency of CD45+CD31+ cells (P = 0.013), glucose level was positively associated with the frequency of CD45+CD3+ cells, and creatinine level (an indicator of renal function) was inversely associated with the frequency of CD45+CD3+ cells (P = 0.015). In conclusion, the frequencies of monocytic, lymphocytic, and angiogenic BM-MNCs varied in relation to patients’ CRFs. These phenotypic variations may affect cell therapy outcomes and might be an important consideration when selecting patients for and reviewing results from autologous cell therapy trials.


Bone marrow mononuclear cells Ischemic heart disease Cardiovascular risk factors ST-segment elevation myocardial infarction Autologous cell therapy 



Bone marrow


Bone marrow mononuclear cell


Cardiovascular cell therapy research network


Cardiovascular risk factor


Ischemic heart disease


Left ventricular ejection fraction


Myocardial infarction


ST-segment elevation myocardial infarction



We would like to acknowledge the National Heart, Lung, and Blood Institute, and National Center for Research Resources. The CCTRN acknowledges its industry partners, Biosafe, Biologics Delivery System Group, and Cordis Corporation, for their contributions of equipment and technical support during the conduct of the trial. Finally, we would like to thank Heather Leibrecht for her assistance in the preparation of this manuscript.

Compliance with ethical standards

Conflict of interest

There are no potential conflicts of interest to disclose.

Sources of funding

This work was supported by the National Heart, Lung, and Blood Institute under cooperative agreement 5 UM1 HL087318. It was also supported, in part, by National Heart, Lung, and Blood Institute contracts N01 HB 37164 and HHSN268201000008C, which were awarded to the Molecular and Cellular Therapeutics Facility, University of Minnesota, and by contracts N01 HB 37163 and HHSN268201000007C, which were awarded to the Cell Processing Facility, Baylor College of Medicine. Further funding provided by National Center for Research Resources CTSA Grant UL1 TR000064 awarded to the University of Florida. In addition, funding from the Texas State Legislature was used to assist investigators at the Texas Heart Institute, Houston, Texas.


  1. 1.
    Assmus B, Honold J, Schachinger V, Britten MB, Fischer-Rasokat U, Lehmann R, Teupe C, Pistorius K, Martin H, Abolmaali ND, Tonn T, Dimmeler S, Zeiher AM (2006) Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med 355:1222–1232. doi: 10.1056/NEJMoa051779 CrossRefPubMedGoogle Scholar
  2. 2.
    Barth SD, Kaaks R, Johnson T, Katzke V, Gellhaus K, Schulze JJ, Olek S, Kuhn T (2016) The ratio of regulatory (FOXP3+) to total (CD3+) T cells determined by epigenetic cell counting and cardiovascular disease risk: a prospective case-cohort study in non-diabetics. EBioMedicine. doi: 10.1016/j.ebiom.2016.07.035 PubMedPubMedCentralGoogle Scholar
  3. 3.
    Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res 114:1852–1866. doi: 10.1161/CIRCRESAHA.114.302721 CrossRefPubMedGoogle Scholar
  4. 4.
    Bjorkbacka H (2016) Can circulating regulatory T cells predict cardiovascular disease? EBioMedicine. doi: 10.1016/j.ebiom.2016.08.044 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Black MA, Cable NT, Thijssen DH, Green DJ (2009) Impact of age, sex, and exercise on brachial artery flow-mediated dilatation. Am J Physiol Heart Circ Physiol 297:H1109–H1116. doi: 10.1152/ajpheart.00226.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Black MA, Green DJ, Cable NT (2008) Exercise prevents age-related decline in nitric-oxide-mediated vasodilator function in cutaneous microvessels. J Physiol 586:3511–3524. doi: 10.1113/jphysiol.2008.153742 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Caligiuri G, Nicoletti A, Poirier B, Hansson GK (2002) Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest 109:745–753. doi: 10.1172/JCI7272 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cogle CR, Wise E, Meacham AM, Zierold C, Traverse JH, Henry TD, Perin EC, Willerson JT, Ellis SG, Carlson M, Zhao DX, Bolli R, Cooke JP, Anwaruddin S, Bhatnagar A, da Graca Cabreira-Hansen M, Grant MB, Lai D, Moye L, Ebert RF, Olson RE, Sayre SL, Schulman IH, Bosse RC, Scott EW, Simari RD, Pepine CJ, Taylor DA, Cardiovascular Cell Therapy Research N (2014) Detailed analysis of bone marrow from patients with ischemic heart disease and left ventricular dysfunction: BM CD34, CD11b, and clonogenic capacity as biomarkers for clinical outcomes. Circ Res 115:867–874. doi: 10.1161/CIRCRESAHA.115.304353 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cutini PH, Campelo AE, Agriello E, Sandoval MJ, Rauschemberger MB, Massheimer VL (2012) The role of sex steroids on cellular events involved in vascular disease. J Steroid Biochem Mol Biol 132:322–330. doi: 10.1016/j.jsbmb.2012.08.001 CrossRefPubMedGoogle Scholar
  10. 10.
    de Jong R, Houtgraaf JH, Samiei S, Boersma E, Duckers HJ (2014) Intracoronary stem cell infusion after acute myocardial infarction: a meta-analysis and update on clinical trials. Circ Cardiovasc Interv 7:156–167. doi: 10.1161/CIRCINTERVENTIONS.113.001009 CrossRefPubMedGoogle Scholar
  11. 11.
    Donato AJ, Eskurza I, Silver AE, Levy AS, Pierce GL, Gates PE, Seals DR (2007) Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res 100:1659–1666. doi: 10.1161/01.RES.0000269183.13937.e8 CrossRefPubMedGoogle Scholar
  12. 12.
    Entman ML, Youker K, Shoji T, Kukielka G, Shappell SB, Taylor AA, Smith CW (1992) Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence. J Clin Invest 90:1335–1345. doi: 10.1172/JCI115999 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fernandez-Aviles F, San Roman JA, Garcia-Frade J, Fernandez ME, Penarrubia MJ, de la Fuente L, Gomez-Bueno M, Cantalapiedra A, Fernandez J, Gutierrez O, Sanchez PL, Hernandez C, Sanz R, Garcia-Sancho J, Sanchez A (2004) Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 95:742–748. doi: 10.1161/01.RES.0000144798.54040.ed CrossRefPubMedGoogle Scholar
  14. 14.
    Ge Y, Cheng S, Larson MG, Ghorbani A, Martin RP, Klein RJ, O’Donnell CJ, Vasan RS, Shaw SY, Wang TJ, Cohen KS (2013) Circulating CD31 + leukocyte frequency is associated with cardiovascular risk factors. Atherosclerosis 229:228–233. doi: 10.1016/j.atherosclerosis.2013.04.017 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gruber CJ, Tschugguel W, Schneeberger C, Huber JC (2002) Production and actions of estrogens. N Engl J Med 346:340–352. doi: 10.1056/NEJMra000471 CrossRefPubMedGoogle Scholar
  16. 16.
    Gyongyosi M, Wojakowski W, Lemarchand P, Lunde K, Tendera M, Bartunek J, Marban E, Assmus B, Henry TD, Traverse JH, Moye LA, Surder D, Corti R, Huikuri H, Miettinen J, Wohrle J, Obradovic S, Roncalli J, Malliaras K, Pokushalov E, Romanov A, Kastrup J, Bergmann MW, Atsma DE, Diederichsen A, Edes I, Benedek I, Benedek T, Pejkov H, Nyolczas N, Pavo N, Bergler-Klein J, Pavo IJ, Sylven C, Berti S, Navarese EP, Maurer G, Investigators A (2015) Meta-analysis of cell-based cardiac studies (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ Res 116:1346–1360. doi: 10.1161/CIRCRESAHA.116.304346 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Harrison DG, Marvar PJ, Titze JM (2012) Vascular inflammatory cells in hypertension. Front Physiol 3:128. doi: 10.3389/fphys.2012.00128 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Heimbeck I, Hofer TP, Eder C, Wright AK, Frankenberger M, Marei A, Boghdadi G, Scherberich J, Ziegler-Heitbrock L (2010) Standardized single-platform assay for human monocyte subpopulations: lower CD14+CD16++ monocytes in females. Cytometry A 77:823–830. doi: 10.1002/cyto.a.20942 CrossRefPubMedGoogle Scholar
  19. 19.
    Hur J, Yang HM, Yoon CH, Lee CS, Park KW, Kim JH, Kim TY, Kim JY, Kang HJ, Chae IH, Oh BH, Park YB, Kim HS (2007) Identification of a novel role of T cells in postnatal vasculogenesis: characterization of endothelial progenitor cell colonies. Circulation 116:1671–1682. doi: 10.1161/CIRCULATIONAHA.107.694778 CrossRefPubMedGoogle Scholar
  20. 20.
    Jeevanantham V, Butler M, Saad A, Abdel-Latif A, Zuba-Surma EK, Dawn B (2012) Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation 126:551–568. doi: 10.1161/CIRCULATIONAHA.111.086074 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kandala J, Upadhyay GA, Pokushalov E, Wu S, Drachman DE, Singh JP (2013) Meta-analysis of stem cell therapy in chronic ischemic cardiomyopathy. Am J Cardiol 112:217–225. doi: 10.1016/j.amjcard.2013.03.021 CrossRefPubMedGoogle Scholar
  22. 22.
    Kawamoto A, Tkebuchava T, Yamaguchi J, Nishimura H, Yoon YS, Milliken C, Uchida S, Masuo O, Iwaguro H, Ma H, Hanley A, Silver M, Kearney M, Losordo DW, Isner JM, Asahara T (2003) Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107:461–468CrossRefPubMedGoogle Scholar
  23. 23.
    Kim H, Cho HJ, Kim SW, Liu B, Choi YJ, Lee J, Sohn YD, Lee MY, Houge MA, Yoon YS (2010) CD31+ cells represent highly angiogenic and vasculogenic cells in bone marrow: novel role of nonendothelial CD31+ cells in neovascularization and their therapeutic effects on ischemic vascular disease. Circ Res 107:602–614. doi: 10.1161/CIRCRESAHA.110.218396 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kim SY, Lee JH, Kim HJ, Park MK, Huh JW, Ro JY, Oh YM, Lee SD, Lee YS (2012) Mesenchymal stem cell-conditioned media recovers lung fibroblasts from cigarette smoke-induced damage. Am J Physiol Lung Cell Mol Physiol 302:L891–L908. doi: 10.1152/ajplung.00288.2011 CrossRefPubMedGoogle Scholar
  25. 25.
    Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436. doi: 10.1038/86498 CrossRefPubMedGoogle Scholar
  26. 26.
    Kunz GA, Liang G, Cuculi F, Gregg D, Vata KC, Shaw LK, Goldschmidt-Clermont PJ, Dong C, Taylor DA, Peterson ED (2006) Circulating endothelial progenitor cells predict coronary artery disease severity. Am Heart J 152:190–195. doi: 10.1016/j.ahj.2006.02.001 CrossRefPubMedGoogle Scholar
  27. 27.
    Kushner EJ, Weil BR, MacEneaney OJ, Morgan RG, Mestek ML, Van Guilder GP, Diehl KJ, Stauffer BL, DeSouza CA (2010) Human aging and CD31+ T-cell number, migration, apoptotic susceptibility, and telomere length. J Appl Physiol (1985) 109:1756–1761. doi: 10.1152/japplphysiol.00601.2010 CrossRefGoogle Scholar
  28. 28.
    Leon LJ, Gustafsson AB (2015) Staying young at heart: autophagy and adaptation to cardiac aging. J Mol Cell Cardiol. doi: 10.1016/j.yjmcc.2015.11.006 PubMedGoogle Scholar
  29. 29.
    Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473:317–325. doi: 10.1038/nature10146 CrossRefPubMedGoogle Scholar
  30. 30.
    Moresi R, Tesei S, Costarelli L, Viticchi C, Stecconi R, Bernardini G, Provinciali M (2005) Age- and gender-related alterations of the number and clonogenic capacity of circulating CD34+ progenitor cells. Biogerontology 6:185–192. doi: 10.1007/s10522-005-7954-5 CrossRefPubMedGoogle Scholar
  31. 31.
    Mu L, Wang J, Guo X, Zheng S, Shan K, Jing C, Li L (2014) Correlation and clinical significance of expressions of HIF-1alpha and Sema4D in colorectal carcinoma tissues. Zhonghua Wei Chang Wai Ke Za Zhi 17:388–392PubMedGoogle Scholar
  32. 32.
    Nauta ST, Deckers JW, van der Boon RM, Akkerhuis KM, van Domburg RT (2014) Risk factors for coronary heart disease and survival after myocardial infarction. Eur J Prev Cardiol 21:576–583. doi: 10.1177/2047487312460514 CrossRefPubMedGoogle Scholar
  33. 33.
    Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P (2003) Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant 7(Suppl 3):86–88CrossRefPubMedGoogle Scholar
  34. 34.
    Penn MS (2009) Importance of the SDF-1:CXCR4 axis in myocardial repair. Circ Res 104:1133–1135. doi: 10.1161/CIRCRESAHA.109.198929 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Perin EC, Willerson JT, Pepine CJ, Henry TD, Ellis SG, Zhao DX, Silva GV, Lai D, Thomas JD, Kronenberg MW, Martin AD, Anderson RD, Traverse JH, Penn MS, Anwaruddin S, Hatzopoulos AK, Gee AP, Taylor DA, Cogle CR, Smith D, Westbrook L, Chen J, Handberg E, Olson RE, Geither C, Bowman S, Francescon J, Baraniuk S, Piller LB, Simpson LM, Loghin C, Aguilar D, Richman S, Zierold C, Bettencourt J, Sayre SL, Vojvodic RW, Skarlatos SI, Gordon DJ, Ebert RF, Kwak M, Moye LA, Simari RD, Cardiovascular Cell Therapy Research N (2012) Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial. JAMA 307:1717–1726. doi: 10.1001/jama.2012.418 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, Wang T, Gregg D, Ramaswami P, Pippen AM, Annex BH, Dong C, Taylor DA (2003) Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 108:457–463. doi: 10.1161/01.CIR.0000082924.75945.48 CrossRefPubMedGoogle Scholar
  37. 37.
    Rogacev KS, Cremers B, Zawada AM, Seiler S, Binder N, Ege P, Grosse-Dunker G, Heisel I, Hornof F, Jeken J, Rebling NM, Ulrich C, Scheller B, Bohm M, Fliser D, Heine GH (2012) CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J Am Coll Cardiol 60:1512–1520. doi: 10.1016/j.jacc.2012.07.019 CrossRefPubMedGoogle Scholar
  38. 38.
    Rosendorff C, Black HR, Cannon CP, Gersh BJ, Gore J, Izzo JL Jr, Kaplan NM, O’Connor CM, O’Gara PT, Oparil S, American Heart Association Council for High Blood Pressure R, American Heart Association Council on Clinical C, American Heart Association Council on E, Prevention (2007) Treatment of hypertension in the prevention and management of ischemic heart disease: a scientific statement from the American Heart Association Council for High Blood Pressure Research and the Councils on Clinical Cardiology and Epidemiology and Prevention. Circulation 115:2761–2788. doi: 10.1161/CIRCULATIONAHA.107.183885 CrossRefPubMedGoogle Scholar
  39. 39.
    Ross MD, Malone E, Florida-James G (2016) Vascular ageing and exercise: focus on cellular reparative processes. Oxid Med Cell Longev 2016:15. doi: 10.1155/2016/3583956 CrossRefGoogle Scholar
  40. 40.
    Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113:810–834. doi: 10.1161/CIRCRESAHA.113.300219 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Schutt RC, Trachtenberg BH, Cooke JP, Traverse JH, Henry TD, Pepine CJ, Willerson JT, Perin EC, Ellis SG, Zhao DX, Bhatnagar A, Johnstone BH, Lai D, Resende M, Ebert RF, Wu JC, Sayre SL, Orozco A, Zierold C, Simari RD, Moye L, Cogle CR, Taylor DA, Cardiovascular Cell Therapy Research N (2015) Bone marrow characteristics associated with changes in infarct size after STEMI: a biorepository evaluation from the CCTRN TIME trial. Circ Res 116:99–107. doi: 10.1161/CIRCRESAHA.116.304710 CrossRefPubMedGoogle Scholar
  42. 42.
    Serrano CV Jr, Yoshida VM, Venturinelli ML, D’Amico E, Monteiro HP, Ramires JA, da Luz PL (2001) Effect of simvastatin on monocyte adhesion molecule expression in patients with hypercholesterolemia. Atherosclerosis 157:505–512. doi: 10.1016/S0021-9150(00)00757-7 CrossRefPubMedGoogle Scholar
  43. 43.
    Soucy KG, Ryoo S, Benjo A, Lim HK, Gupta G, Sohi JS, Elser J, Aon MA, Nyhan D, Shoukas AA, Berkowitz DE (2006) Impaired shear stress-induced nitric oxide production through decreased NOS phosphorylation contributes to age-related vascular stiffness. J Appl Physiol (1985) 101:1751–1759. doi: 10.1152/japplphysiol.00138.2006 CrossRefGoogle Scholar
  44. 44.
    Spier SA, Delp MD, Meininger CJ, Donato AJ, Ramsey MW, Muller-Delp JM (2004) Effects of ageing and exercise training on endothelium-dependent vasodilatation and structure of rat skeletal muscle arterioles. J Physiol 556:947–958. doi: 10.1113/jphysiol.2003.060301 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I (1996) The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother 5:213–226CrossRefPubMedGoogle Scholar
  46. 46.
    Taddei S, Virdis A, Ghiadoni L, Salvetti G, Bernini G, Magagna A, Salvetti A (2001) Age-related reduction of NO availability and oxidative stress in humans. Hypertension 38:274–279CrossRefPubMedGoogle Scholar
  47. 47.
    Tajiri N, Duncan K, Borlongan MC, Pabon M, Acosta S, de la Pena I, Hernadez-Ontiveros D, Lozano D, Aguirre D, Reyes S, Sanberg PR, Eve DJ, Borlongan CV, Kaneko Y (2014) Adult stem cell transplantation: is gender a factor in stemness? Int J Mol Sci 15:15225–15243. doi: 10.3390/ijms150915225 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tang YL, Zhu W, Cheng M, Chen L, Zhang J, Sun T, Kishore R, Phillips MI, Losordo DW, Qin G (2009) Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ Res 104:1209–1216. doi: 10.1161/CIRCRESAHA.109.197723 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Taylor DA, Perin EC, Willerson JT, Zierold C, Resende M, Carlson M, Nestor B, Wise E, Orozco A, Pepine CJ, Henry TD, Ellis SG, Zhao DX, Traverse JH, Cooke JP, Schutt RC, Bhatnagar A, Grant MB, Lai D, Johnstone BH, Sayre SL, Moye L, Ebert RF, Bolli R, Simari RD, Cogle CR (2015) Identification of bone marrow cell subpopulations associated with improved functional outcomes in patients with chronic left ventricular dysfunction: an embedded cohort evaluation of the FOCUS-CCTRN TRIAL. Cell Transplant. doi: 10.3727/096368915X689901 PubMedPubMedCentralGoogle Scholar
  50. 50.
    Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:II247–II256CrossRefPubMedGoogle Scholar
  51. 51.
    Traverse JH, Henry TD, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, Forder JR, Byrne BJ, Hatzopoulos AK, Penn MS, Perin EC, Baran KW, Chambers J, Lambert C, Raveendran G, Simon DI, Vaughan DE, Simpson LM, Gee AP, Taylor DA, Cogle CR, Thomas JD, Silva GV, Jorgenson BC, Olson RE, Bowman S, Francescon J, Geither C, Handberg E, Smith DX, Baraniuk S, Piller LB, Loghin C, Aguilar D, Richman S, Zierold C, Bettencourt J, Sayre SL, Vojvodic RW, Skarlatos SI, Gordon DJ, Ebert RF, Kwak M, Moye LA, Simari RD, Cardiovascular Cell Therapy R (2011) Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA 306:2110–2119. doi: 10.1001/jama.2011.1670 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG, Forder JR, Anderson RD, Hatzopoulos AK, Penn MS, Perin EC, Chambers J, Baran KW, Raveendran G, Lambert C, Lerman A, Simon DI, Vaughan DE, Lai D, Gee AP, Taylor DA, Cogle CR, Thomas JD, Olson RE, Bowman S, Francescon J, Geither C, Handberg E, Kappenman C, Westbrook L, Piller LB, Simpson LM, Baraniuk S, Loghin C, Aguilar D, Richman S, Zierold C, Spoon DB, Bettencourt J, Sayre SL, Vojvodic RW, Skarlatos SI, Gordon DJ, Ebert RF, Kwak M, Moye LA, Simari RD, Cardiovascular Cell Therapy Research N (2012) Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA 308:2380–2389. doi: 10.1001/jama.2012.28726 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Traverse JH, Henry TD, Vaughan DE, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, Piller LB, Penn MS, Byrne BJ, Perin EC, Gee AP, Hatzopoulos AK, McKenna DH, Forder JR, Taylor DA, Cogle CR, Olson RE, Jorgenson BC, Sayre SL, Vojvodic RW, Gordon DJ, Skarlatos SI, Moye LA, Simari RD, Cardiovascular Cell Therapy Research N (2009) Rationale and design for TIME: A phase II, randomized, double-blind, placebo-controlled pilot trial evaluating the safety and effect of timing of administration of bone marrow mononuclear cells after acute myocardial infarction. Am Heart J 158:356–363. doi: 10.1016/j.ahj.2009.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Traverse JH, Henry TD, Vaughan DE, Ellis SG, Pepine CJ, Willerson JT, Zhao DX, Simpson LM, Penn MS, Byrne BJ, Perin EC, Gee AP, Hatzopoulos AK, McKenna DH, Forder JR, Taylor DA, Cogle CR, Baraniuk S, Olson RE, Jorgenson BC, Sayre SL, Vojvodic RW, Gordon DJ, Skarlatos SI, Moye LA, Simari RD, Cardiovascular Cell Therapy Research N (2010) LateTIME: a phase-II, randomized, double-blinded, placebo-controlled, pilot trial evaluating the safety and effect of administration of bone marrow mononuclear cells 2 to 3 weeks after acute myocardial infarction. Tex Heart Inst J 37:412–420PubMedPubMedCentralGoogle Scholar
  55. 55.
    Vaccarino V, Krumholz HM, Berkman LF, Horwitz RI (1995) Sex differences in mortality after myocardial infarction. Is there evidence for an increased risk for women? Circulation 91:1861–1871CrossRefPubMedGoogle Scholar
  56. 56.
    Wang H, Hou L, Kwak D, Fassett J, Xu X, Chen A, Chen W, Blazar BR, Xu Y, Hall JL, Ge JB, Bache RJ, Chen Y (2016) Increasing regulatory T cells with interleukin-2 and interleukin-2 antibody complexes attenuates lung inflammation and heart failure progression. Hypertension 68:114–122. doi: 10.1161/HYPERTENSIONAHA.116.07084 CrossRefPubMedGoogle Scholar
  57. 57.
    Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17:1410–1422. doi: 10.1038/nm.2538 CrossRefPubMedGoogle Scholar
  58. 58.
    Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364:141–148. doi: 10.1016/S0140-6736(04)16626-9 CrossRefPubMedGoogle Scholar
  59. 59.
    Cardiovascular diseases (CVDs). Fact sheet no. 317. Accessed 14 Aug 2014
  60. 60.
    Yip HK, Chang LT, Chang WN, Lu CH, Liou CW, Lan MY, Liu JS, Youssef AA, Chang HW (2008) Level and value of circulating endothelial progenitor cells in patients after acute ischemic stroke. Stroke 39:69–74. doi: 10.1161/STROKEAHA.107.489401 CrossRefPubMedGoogle Scholar
  61. 61.
    Zenovich AG, Panoskaltsis-Mortari A, Caron GJ, Kolb AG, Fremming R, Nelson WD, Taylor DA (2008) Sex-based differences in vascular repair with bone marrow cell therapy: relevance of regulatory and Th2-type cytokines. Transplant Proc 40:641–643. doi: 10.1016/j.transproceed.2008.01.040 CrossRefPubMedGoogle Scholar
  62. 62.
    Zierold C, Carlson MA, Obodo UC, Wise E, Piazza VA, Meeks MW, Vojvodic RW, Baraniuk S, Henry TD, Gee AP, Ellis SG, Moye LA, Pepine CJ, Cogle CR, Taylor DA (2011) Developing mechanistic insights into cardiovascular cell therapy: cardiovascular Cell Therapy Research Network Biorepository Core Laboratory rationale. Am Heart J 162:973–980. doi: 10.1016/j.ahj.2011.05.024 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ariadna Contreras
    • 1
  • Aaron F. Orozco
    • 1
  • Micheline Resende
    • 1
  • Robert C. Schutt
    • 2
  • Jay H. Traverse
    • 3
  • Timothy D. Henry
    • 4
  • Dejian Lai
    • 5
  • John P. Cooke
    • 2
  • Roberto Bolli
    • 6
  • Michelle L. Cohen
    • 5
  • Lem Moyé
    • 5
  • Carl J. Pepine
    • 7
  • Phillip C. Yang
    • 8
  • Emerson C. Perin
    • 1
  • James T. Willerson
    • 1
  • Doris A. Taylor
    • 1
  • For the Cardiovascular Cell Therapy Research Network (CCTRN)
  1. 1.Texas Heart InstituteHoustonUSA
  2. 2.Houston Methodist DeBakey Heart and Vascular CenterHouston Methodist Research InstituteHoustonUSA
  3. 3.Minneapolis Heart Institute FoundationAbbott Northwestern HospitalMinneapolisUSA
  4. 4.Cedars Sinai InstituteLos AngelesUSA
  5. 5.UT Health School of Public HealthHoustonUSA
  6. 6.University of LouisvilleLouisvilleUSA
  7. 7.College of MedicineUniversity of FloridaGainesvilleUSA
  8. 8.Stanford University School of MedicineStanfordUSA

Personalised recommendations