Advertisement

Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes

  • Marte Bliksøen
  • Lars Henrik Mariero
  • May Kristin Torp
  • Anton Baysa
  • Kirsti Ytrehus
  • Fred Haugen
  • Ingebjørg Seljeflot
  • Jarle Vaage
  • Guro Valen
  • Kåre-Olav StensløkkenEmail author
Original Contribution

Abstract

Acute myocardial infarction (AMI) causes sterile inflammation, which exacerbates tissue injury. Elevated levels of circulating mitochondrial DNA (mtDNA) have been associated with AMI. We hypothesized that mtDNA triggers an innate immune response via TLR9 and NF-κB activation, causing cardiomyocyte injury. Murine cardiomyocytes express TLR9 mRNA and protein and were able to internalize fluorescently labeled mouse mtDNA. Incubation of human embryonic kidney cells with serum from AMI patients containing naturally elevated levels of mtDNA induced TLR9-dependent NF-κB activity. This effect was mimicked by isolated mtDNA. mtDNA activated NF-κB in reporter mice both in vivo and in isolated cardiomyocytes. Moreover, incubation of isolated cardiomyocytes with mtDNA induced cell death after 4 and 24 h. Laser confocal microscopy showed that incubation of cardiomyocytes with mtDNA accelerated mitochondrial depolarization induced by reactive oxygen species. In contrast to mtDNA, isolated total DNA did not activate NF-κB nor induce cell death. In conclusion, mtDNA can induce TLR9-dependent NF-κB activation in reporter cells and activate NF-κB in cardiomyocytes. In cardiomyocytes, mtDNA causes mitochondrial dysfunction and death. Endogenous mtDNA in the extracellular space is a danger signal with direct detrimental effects on cardiomyocytes.

Keywords

Mitochondrial DNA mtDNA Inflammation TLR9 NF-κB Myocardial infarction 

Notes

Acknowledgments

Harald Carlsen and Jan Øivind Moskaug, Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, kindly provided NF-κB luciferase reporter mice. The authors acknowledge the expertise of Gerbrand Koster for technical advice (NorMIC imaging cluster, Department of Biosciences, University of Oslo) and technical assistance was expertly performed by Torun Flatebø and Sowmya Sanjeevini.

Funding

This work was supported by the Norwegian Health Association, UNIFOR, the Norwegian Research Council, the University of Oslo, and the Novo Nordisk Foundation. Marte Bliksøen was supported by a grant from South-Eastern Regional Health Trust.

Compliance with ethical standards

Conflict of interest

None.

Supplementary material

395_2016_553_MOESM1_ESM.tif (1 mb)
Supplementary material 1 (TIFF 1029 kb) Figure S1 legend: 1 % agarose gel with SYBR Safe DNA gel stain (Invitrogen) showing DNA isolated from murine liver or from mitochondrial extracts from murine liver, eluted in buffer and subjected to sonication for 2 × 30 s or sham treatment with the same sample handling but without sonication. Arrow: heavy DNA band present in unsonicated mitochondrial DNA sample (mtDNA), which is absent from the sonicated samples (mtDNAs), indicating DNA fragmentation. There is evidence of some DNA degradation in the non-sonicated samples, but the mtDNAs sample shows denser smearing in the ~ 300 bp region. mtDNA (mitochondrial DNA), mtDNAs (sonicated mtDNA), tDNA (total DNA), tDNAs (sonicated total DNA) and 1 kb ladder
395_2016_553_MOESM2_ESM.tif (505 kb)
Supplementary material 2 (TIFF 505 kb) Figure S2 legend: Figure shows remaining primary mouse cardiomyocytes after different DNA agonist treatment for 4 and 24 h. There is a decrease in the number of viable cells after 24 h in control, but the number of cells lost is significantly higher in the cardiomyocytes treated either with mtDNA (B) or CpGC (D). Statistical differences was tested with Wilcoxon matched-pairs signed rank test (* p < 0.05)
395_2016_553_MOESM3_ESM.avi (42 mb)
Supplementary material 3 (AVI 43012 kb) Video S3 The video shows a confocal Z-stack with mouse cardiomyocytes exposed to Cy-5 tagged mtDNA. The mtDNA is present in the peri-nuclear area, but also in the cytosol

References

  1. 1.
    Bliksoen M, Mariero LH, Ohm IK, Haugen F, Yndestad A, Solheim S, Seljeflot I, Ranheim T, Andersen GO, Aukrust P, Valen G, Vinge LE (2012) Increased circulating mitochondrial DNA after myocardial infarction. Int J Cardiol 158:132–134. doi: 10.1016/j.ijcard.2012.04.047 CrossRefPubMedGoogle Scholar
  2. 2.
    Boehm O, Markowski P, van der Giet M, Gielen V, Kokalova A, Brill C, Hoeft A, Baumgarten G, Meyer R, Knuefermann P (2013) In vivo TLR9 inhibition attenuates CpG-induced myocardial dysfunction. Mediators Inflamm 2013:217297. doi: 10.1155/2013/217297 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR (2006) Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res 72:384–393. doi: 10.1016/j.cardiores.2006.09.011 CrossRefPubMedGoogle Scholar
  4. 4.
    Bulicheva N, Fidelina O, Mkrtumova N, Neverova M, Bogush A, Bogush M, Roginko O, Veiko N (2008) Effect of cell-free DNA of patients with cardiomyopathy and rDNA on the frequency of contraction of electrically paced neonatal rat ventricular myocytes in culture. Ann N Y Acad Sci 1137:273–277. doi: 10.1196/annals.1448.023 CrossRefPubMedGoogle Scholar
  5. 5.
    Carlsen H, Moskaug JO, Fromm SH, Blomhoff R (2002) In vivo imaging of NF-kappa B activity. J Immunol 168:1441–1446. doi: 10.4049/jimmunol.168.3.1441 CrossRefPubMedGoogle Scholar
  6. 6.
    Chuang TH, Ulevitch RJ (2000) Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw 11:372–378PubMedGoogle Scholar
  7. 7.
    Collins LV, Hajizadeh S, Holme E, Jonsson IM, Tarkowski A (2004) Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol 75:995–1000. doi: 10.1189/jlb.0703328 CrossRefPubMedGoogle Scholar
  8. 8.
    Doevendans PA, Daemen MJ, de Muinck ED, Smits JF (1998) Cardiovascular phenotyping in mice. Cardiovasc Res 39:34–49. doi: 10.1016/S0008-6363(98)00073-X CrossRefPubMedGoogle Scholar
  9. 9.
    Dohlen G, Carlsen H, Blomhoff R, Thaulow E, Saugstad OD (2005) Reoxygenation of hypoxic mice with 100 % oxygen induces brain nuclear factor-kappa B. Pediatr Res 58:941–945. doi: 10.1203/01.pdr.0000182595.62545.ee CrossRefPubMedGoogle Scholar
  10. 10.
    Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi GP, Chapman HA, Barton GM (2008) The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456:658–662. doi: 10.1038/nature07405 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11:255–265. doi: 10.1038/nrcardio.2014.28 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gustafsson AB, Gottlieb RA (2008) Heart mitochondria: gates of life and death. Cardiovasc Res 77:334–343. doi: 10.1093/cvr/cvm005 CrossRefPubMedGoogle Scholar
  13. 13.
    Hajizadeh S, DeGroot J, TeKoppele JM, Tarkowski A, Collins LV (2003) Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res Ther 5:R234–R240. doi: 10.1186/ar787 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Heusch G (2015) Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res 116:674–699. doi: 10.1161/circresaha.116.305348 CrossRefPubMedGoogle Scholar
  15. 15.
    Heusch G, Libby P, Gersh B, Yellon D, Bohm M, Lopaschuk G, Opie L (2014) Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 383:1933–1943. doi: 10.1016/s0140-6736(14)60107-0 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Johansen D, Sanden E, Hagve M, Chu X, Sundset R, Ytrehus K (2011) Heptanol triggers cardioprotection via mitochondrial mechanisms and mitochondrial potassium channel opening in rat hearts. Acta Physiol (Oxf) 201:435–444. doi: 10.1111/j.1748-1716.2010.02221.x CrossRefGoogle Scholar
  17. 17.
    Kariko K, Weissman D, Welsh FA (2004) Inhibition of toll-like receptor and cytokine signaling–a unifying theme in ischemic tolerance. J Cereb Blood Flow Metab 24:1288–1304. doi: 10.1097/01.wcb.0000145666.68576.71 CrossRefPubMedGoogle Scholar
  18. 18.
    Kelly RD, Mahmud A, McKenzie M, Trounce IA, St John JC (2012) Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A. Nucleic Acids Res 40:10124–10138. doi: 10.1093/nar/gks770 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Knuefermann P, Schwederski M, Velten M, Krings P, Ehrentraut H, Rudiger M, Boehm O, Fink K, Dreiner U, Grohe C, Hoeft A, Baumgarten G, Koch A, Zacharowski K, Meyer R (2008) Bacterial DNA induces myocardial inflammation and reduces cardiomyocyte contractility: role of toll-like receptor 9. Cardiovasc Res 78:26–35. doi: 10.1093/cvr/cvn011 CrossRefPubMedGoogle Scholar
  20. 20.
    Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DC, Monks BG, McKnight CJ, Lamphier MS, Duprex WP, Espevik T, Golenbock DT (2007) Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 8:772–779. doi: 10.1038/ni1479 CrossRefPubMedGoogle Scholar
  21. 21.
    Lei P, Baysa A, Nebb HI, Valen G, Skomedal T, Osnes JB, Yang Z, Haugen F (2013) Activation of Liver X receptors in the heart leads to accumulation of intracellular lipids and attenuation of ischemia-reperfusion injury. Basic Res Cardiol 108:323. doi: 10.1007/s00395-012-0323-z CrossRefPubMedGoogle Scholar
  22. 22.
    Leifer CA, Rose WA 2nd, Botelho F (2013) Traditional biochemical assays for studying toll-like receptor 9. J Immunoassay Immunochem 34:1–15. doi: 10.1080/15321819.2012.666222 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lin L, Knowlton AA (2014) Innate immunity and cardiomyocytes in ischemic heart disease. Life Sci 100:1–8. doi: 10.1016/j.lfs.2014.01.062 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lohner R, Schwederski M, Narath C, Klein J, Duerr GD, Torno A, Knuefermann P, Hoeft A, Baumgarten G, Meyer R, Boehm O (2013) Toll-like receptor 9 promotes cardiac inflammation and heart failure during polymicrobial sepsis. Mediators Inflamm 2013:261049. doi: 10.1155/2013/261049 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mathur S, Walley KR, Boyd JH (2011) The Toll-like receptor 9 ligand CPG-C attenuates acute inflammatory cardiac dysfunction. Shock 36:478–483. doi: 10.1097/SHK.0b013e31822d6442 CrossRefPubMedGoogle Scholar
  26. 26.
    Matzinger P (2007) Friendly and dangerous signals: is the tissue in control? Nat Immunol 8:11–13. doi: 10.1038/ni0107-11 CrossRefPubMedGoogle Scholar
  27. 27.
    McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC, Beck PL, Muruve DA, Kubes P (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330:362–366. doi: 10.1126/science.1195491 CrossRefPubMedGoogle Scholar
  28. 28.
    McKelvey KJ, Highton J, Hessian PA (2011) Cell-specific expression of TLR9 isoforms in inflammation. J Autoimmun 36:76–86. doi: 10.1016/j.jaut.2010.11.001 CrossRefPubMedGoogle Scholar
  29. 29.
    Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28:886–892. doi: 10.1248/bpb.28.886 CrossRefPubMedGoogle Scholar
  30. 30.
    Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, Oyabu J, Murakawa T, Nakayama H, Nishida K, Akira S, Yamamoto A, Komuro I, Otsu K (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485:251–255. doi: 10.1038/nature10992 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pollack Y, Kasir J, Shemer R, Metzger S, Szyf M (1984) Methylation pattern of mouse mitochondrial DNA. Nucleic Acids Res 12:4811–4824. doi: 10.1093/nar/12.12.4811 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Riad A, Westermann D, Escher F, Becher PM, Savvatis K, Lettau O, Heimesaat MM, Bereswill S, Volk HD, Schultheiss HP, Tschope C (2010) Myeloid differentiation factor-88 contributes to TLR9-mediated modulation of acute coxsackievirus B3-induced myocarditis in vivo. Am J Physiol Heart Circ Physiol 298:H2024–H2031. doi: 10.1152/ajpheart.01188.2009 CrossRefPubMedGoogle Scholar
  33. 33.
    Ries M, Schuster P, Thomann S, Donhauser N, Vollmer J, Schmidt B (2013) Identification of novel oligonucleotides from mitochondrial DNA that spontaneously induce plasmacytoid dendritic cell activation. J Leukoc Biol 94:123–135. doi: 10.1189/jlb.0612278 CrossRefPubMedGoogle Scholar
  34. 34.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi: 10.1038/nmeth.2089 CrossRefPubMedGoogle Scholar
  35. 35.
    Shintani Y, Kapoor A, Kaneko M, Smolenski RT, D’Acquisto F, Coppen SR, Harada-Shoji N, Lee HJ, Thiemermann C, Takashima S, Yashiro K, Suzuki K (2013) TLR9 mediates cellular protection by modulating energy metabolism in cardiomyocytes and neurons. Proc Natl Acad Sci USA 110:5109–5114. doi: 10.1073/pnas.1219243110 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Solheim S, Grogaard HK, Hoffmann P, Arnesen H, Seljeflot I (2008) Inflammatory responses after percutaneous coronary intervention in patients with acute myocardial infarction or stable angina pectoris. Scand J Clin Lab Inv 68:555–562. doi: 10.1080/00365510701884584 CrossRefGoogle Scholar
  37. 37.
    Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820. doi: 10.1016/j.cell.2010.01.022 CrossRefPubMedGoogle Scholar
  38. 38.
    Valen G (2011) Innate immunity and remodelling. Heart Fail Rev 16:71–78. doi: 10.1007/s10741-010-9187-1 CrossRefPubMedGoogle Scholar
  39. 39.
    Valen G, Yan ZQ, Hansson GK (2001) Nuclear factor kappa-B and the heart. J Am Coll Cardiol 38:307–314. doi: 10.1016/S0735-1097(01)01377-8 CrossRefPubMedGoogle Scholar
  40. 40.
    Valeur HS, Valen G (2009) Innate immunity and myocardial adaptation to ischemia. Basic Res Cardiol 104:22–32. doi: 10.1007/s00395-008-0756-6 CrossRefPubMedGoogle Scholar
  41. 41.
    Velten M, Duerr GD, Pessies T, Schild J, Lohner R, Mersmann J, Dewald O, Zacharowski K, Klaschik S, Hilbert T, Hoeft A, Baumgarten G, Meyer R, Boehm O, Knuefermann P (2012) Priming with synthetic oligonucleotides attenuates pressure overload-induced inflammation and cardiac hypertrophy in mice. Cardiovasc Res 96:422–432. doi: 10.1093/cvr/cvs280 CrossRefPubMedGoogle Scholar
  42. 42.
    Wang L, Jiang W, Ding G, Cao H, Lu Y, Luo P, Zhou H, Zheng J (2007) The newly identified CpG-N ODN208 protects mice from challenge with CpG-S ODN by decreasing TNF-alpha release. Int Immunopharmacol 7:646–655. doi: 10.1016/j.intimp.2007.01.005 CrossRefPubMedGoogle Scholar
  43. 43.
    Yang XM, Cui L, White J, Kuck J, Ruchko MV, Wilson GL, Alexeyev M, Gillespie MN, Downey JM, Cohen MV (2015) Mitochondrially targeted Endonuclease III has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion. Basic Res Cardiol 110:3. doi: 10.1007/s00395-014-0459-0 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135. doi: 10.1056/NEJMra071667 CrossRefPubMedGoogle Scholar
  45. 45.
    Zhang Q, Itagaki K, Hauser CJ (2010) Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock 34:55–59. doi: 10.1097/SHK.0b013e3181cd8c08 CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107. doi: 10.1038/nature08780 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zorov DB, Juhaszova M, Sollott SJ (2006) Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta 1757:509–517. doi: 10.1016/j.bbabio.2006.04.029 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marte Bliksøen
    • 1
    • 2
    • 5
    • 6
  • Lars Henrik Mariero
    • 1
    • 2
  • May Kristin Torp
    • 1
    • 2
  • Anton Baysa
    • 1
    • 2
  • Kirsti Ytrehus
    • 3
  • Fred Haugen
    • 1
    • 2
  • Ingebjørg Seljeflot
    • 2
    • 4
    • 6
  • Jarle Vaage
    • 5
    • 6
  • Guro Valen
    • 1
    • 2
  • Kåre-Olav Stensløkken
    • 1
    • 2
    • 7
    Email author
  1. 1.Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical SciencesUniversity of Oslo (UiO)OsloNorway
  2. 2.Center for Heart Failure Research, UiOOsloNorway
  3. 3.Cardiovascular Research Group, Department of Medical Biology, Faculty of Health SciencesUniversity of TromsøTromsøNorway
  4. 4.Department of Cardiology, Center for Clinical Heart ResearchOslo University HospitalOsloNorway
  5. 5.Department of Emergency Medicine and Intensive CareOslo University HospitalOsloNorway
  6. 6.Institute of Clinical Medicine, UiOOsloNorway
  7. 7.Division of Physiology, Department of Molecular MedicineInstitute of Basic Medical ScienceOsloNorway

Personalised recommendations