Leptin augments coronary vasoconstriction and smooth muscle proliferation via a Rho-kinase-dependent pathway

  • Jillian N. Noblet
  • Adam G. Goodwill
  • Daniel J. Sassoon
  • Alexander M. Kiel
  • Johnathan D. Tune
Original Contribution


Leptin has been implicated as a key upstream mediator of pathways associated with coronary vascular dysfunction and disease. The purpose of this investigation was to test the hypothesis that leptin modifies the coronary artery proteome and promotes increases in coronary smooth muscle contraction and proliferation via influences on Rho kinase signaling. Global proteomic assessment of coronary arteries from lean swine cultured with obese concentrations of leptin (30 ng/mL) for 3 days revealed significant alterations in the coronary artery proteome (68 proteins) and identified an association between leptin treatment and calcium signaling/contraction (four proteins) and cellular growth and proliferation (35 proteins). Isometric tension studies demonstrated that both acute (30 min) and chronic (3 days, serum-free media) exposure to obese concentrations of leptin potentiated depolarization-induced contraction of coronary arteries. Inhibition of Rho kinase significantly reduced leptin-mediated increases in coronary artery contractions. The effects of leptin on the functional expression of Rho kinase were time-dependent, as acute treatment increased Rho kinase activity while chronic (3 day) exposure was associated with increases in Rho kinase protein abundance. Proliferation assays following chronic leptin administration (8 day, serum-containing media) demonstrated that leptin augmented coronary vascular smooth muscle proliferation and increased Rho kinase activity. Inhibition of Rho kinase significantly reduced these effects of leptin. Taken together, these findings demonstrate that leptin promotes increases in coronary vasoconstriction and smooth muscle proliferation and indicate that these phenotypic effects are associated with alterations in the coronary artery proteome and dynamic effects on the Rho kinase pathway.


Leptin Rho kinase Coronary 



This publication was made possible in part by the Indiana University Health–Indiana University School of Medicine Strategic Research Initiative (CECARE); HL117620 (Tune-Mather); TL1 TR001107 and UL1 TR001108 (Noblet, Sassoon). Ingenuity Pathway Analyses were made possible by a collaboration with WV-INBRE (supported by NIH Grant P20GM103434). The authors also thank Arpad Somogyi and the Proteomics Core at The Ohio State University for performing mass spectrometry.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

395_2016_545_MOESM1_ESM.pdf (381 kb)
Supplementary material 1 (PDF 380 kb)
395_2016_545_MOESM2_ESM.pdf (317 kb)
Supplementary material 2 (PDF 316 kb)


  1. 1.
    Bain J, Plater L, Elliott M, Shpiro N, Hastie C, McLauchlan H, Klevernic I, Arthur J, Alessi D, Cohen P (2007) The selectivity of protein kinase inhibitors: a further update. Biochem J 408:297–315. doi: 10.1042/BJ20070797 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Beltowski J (2006) Leptin and atherosclerosis. Atherosclerosis 189:47–60. doi: 10.1016/j.atherosclerosis.2006.03.003 CrossRefPubMedGoogle Scholar
  3. 3.
    Beltowski J (2012) Leptin and the regulation of endothelial function in physiological and pathological conditions. Clin Exp Pharmacol Physiol 39:168–178. doi: 10.1111/j.1440-1681.2011.05623.x CrossRefPubMedGoogle Scholar
  4. 4.
    Berwick ZC, Dick GM, O’Leary HA, Bender SB, Goodwill AG, Moberly SP, Owen MK, Miller SJ, Obukhov AG, Tune JD (2013) Contribution of electromechanical coupling between KV and CaV1.2 channels to coronary dysfunction in obesity. Basic Res Cardiol 108:370. doi: 10.1007/s00395-013-0370-0 CrossRefPubMedGoogle Scholar
  5. 5.
    Berwick ZC, Dick GM, Tune JD (2012) Heart of the matter: coronary dysfunction in metabolic syndrome. J Mol Cell Cardiol 52:848–856. doi: 10.1016/j.yjmcc.2011.06.025 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bohlen F, Kratzsh J, Mueller M, Seidel B, Friedman-Einat M, Witzigmann H, Teupser D, Koerner A, Storck M, Thiery J (2007) Leptin inhibits cell growth of human vascular smooth muscle cells. Vasc Pharmacol 46:67–71. doi: 10.1016/j.vph.2006.06.014 CrossRefGoogle Scholar
  7. 7.
    Bouloumie A, Marumo T, Lafontan M, Busse R (1999) Leptin induces oxidative stress in human endothelial cells. FASEB J 13:1231–1238PubMedGoogle Scholar
  8. 8.
    Brown NK, Zhou Z, Zhang J, Zeng R, Wu J, Eitzman DT, Chen YE, Chang L (2014) Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arterioscler Thromb Vasc Biol 34:1621–1630. doi: 10.1161/ATVBAHA.114.303029 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chatterjee TK, Aronow BJ, Tong WS, Manka D, Tang Y, Bogdanov VY, Unruh D, Blomkalns AL, Piegore MGJ, Weintraub DS, Rudiche SM, Kuhel DG, Hui DY, Weintraub NL (2013) Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis. Physiol Genom 45:697–709. doi: 10.1152/physiolgenomics.00042 CrossRefGoogle Scholar
  10. 10.
    Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, Rothenberg FG, Neltner B, Romig-Martin SA, Dickson EW, Rudich S, Weintraub NL (2009) Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res 104:541–549. doi: 10.1161/CIRCRESAHA.108.182998 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cheng KH, Chu CS, Lee KT, Lin TH, Hsieh CC, Chiu CC, Voon WC, Sheu SH, Lai WT (2008) Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes (Lond) 32:268–274. doi: 10.1038/sj.ijo.0803726 CrossRefGoogle Scholar
  12. 12.
    Davies S, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Drolet R, Belanger C, Fortier M, Huot C, Mailloux J, Legare D, Tchernof A (2009) Fat depot-specific impact of visceral obesity on adipocyte adiponectin release in women. Obesity (Silver Spring) 17:424–430. doi: 10.1038/oby.2008.555 CrossRefGoogle Scholar
  14. 14.
    Fortuno A, Rodriguez A, Gomez-Ambrosi J, Muniz P, Salvador J, Diez J, Fruhbeck G (2002) Leptin inhibits angiotensin II-induced intracellular calcium increase and vasoconstriction in the rat aorta. Endocrinology 143:3555–3560. doi: 10.1210/en.2002-220075 CrossRefPubMedGoogle Scholar
  15. 15.
    Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770. doi: 10.1038/27376 CrossRefPubMedGoogle Scholar
  16. 16.
    Gollasch M (2012) Vasodilator signals from perivascular adipose tissue. Br J Pharmacol 165:633–642. doi: 10.1111/j.1476-5381.2011.01430.x CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gorter PM, van Lindert AS, de Vos AM, Meijs MF, van der Graaf Y, Doevendans PA, Prokop M, Visseren FL (2008) Quantification of epicardial and peri-coronary fat using cardiac computed tomography; reproducibility and relation with obesity and metabolic syndrome in patients suspected of coronary artery disease. Atherosclerosis 197:896–903. doi: 10.1016/j.atherosclerosis.2007.08.016 CrossRefPubMedGoogle Scholar
  18. 18.
    Gruen M, Hao M, Piston D, Hasty A (2007) Leptin requires canonical migratory signaling pathways for induction of monocyte and macrophage chemotaxsis. Am J Physiol Cell Physiol 293:C1481–C1488. doi: 10.1152/ajpcell.00062.2007 CrossRefPubMedGoogle Scholar
  19. 19.
    Huang F, Xiong X, Wang H, You S, Zneg H (2010) Leptin-induced vascular smooth muscle cell proliferation via regulating cell cycle, activating ERK1/2 and NF-kB. Acta Biochim Biophys Sin 42:325–331. doi: 10.1093/abbs/gmq025 CrossRefPubMedGoogle Scholar
  20. 20.
    Knudson JD, Dincer UD, Zhang C, Swafford AN Jr, Koshida R, Picchi A, Focardi M, Dick GM, Tune JD (2005) Leptin receptors are expressed in coronary arteries and hyperleptinemia causes significant coronary endothelial dysfunction. Am J Physiol Heart Circ Physiol. doi: 10.1152/ajpheart.01159.2004 Google Scholar
  21. 21.
    Korda M, Kubant R, Patton S, Malinski T (2008) Leptin-induced endothelial dysfunction in obesity. Am J Physiol Heart Circ Physiol 295:H1514–H1521. doi: 10.1152/ajpheart.00479.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S (2005) Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol 288:H2031–H2041. doi: 10.1152/ajpheart.01058.2004 CrossRefPubMedGoogle Scholar
  23. 23.
    Lin YC, Huang J, Kan H, Castranova V, Frisbee JC, Yu HG (2012) Defective calcium inactivation causes long QT in obese insulin-resistant rat. Am J Physiol Heart Circ Physiol 302:H1013–H1022. doi: 10.1152/ajpheart.00837.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Liu B, Itoh H, Louie O, Kubota K, Kent K (2002) The signaling protein Rho is necesary for vascular smooth muscle migration and survival but not for proliferation. Surgery 132:317–325. doi: 10.1067/msy.2002.125786 CrossRefPubMedGoogle Scholar
  25. 25.
    Loirand G, Guerin P, Pacaud P (2006) Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 98:322–334. doi: 10.1161/01.RES.0000201960.04223.3c CrossRefPubMedGoogle Scholar
  26. 26.
    Mazurek T, Zhang L, Zalewski A, Mannion D, Diehl J, Arafat H, Sarov-Blat L, O’Brien S, Keiper E, Johnson A, Martin J, Goldstein B, Shi Y (2003) Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108:2460–2466. doi: 10.1161/01.CIR.0000099542.57313.C5 CrossRefPubMedGoogle Scholar
  27. 27.
    Noblet JN, Owen MK, Goodwill AG, Sassoon DJ, Tune JD (2015) Lean and obese coronary perivascular adipose tissue impairs vasodilation via differential inhibition of vascular smooth muscle K+ channels. Arterioscler Thromb Vasc Biol 35:1393–1400. doi: 10.1161/ATVBAHA.115.305500 CrossRefPubMedGoogle Scholar
  28. 28.
    Oda A, Taniguchi T, Yokoyama M (2001) Leptin stimulates rat aortic smooth muscle cell proliferation and migration. Kobe J Med Sci 47:141–150PubMedGoogle Scholar
  29. 29.
    Ouchi N, Parker JL, Lugus JJ, Walsh K (2011) Adipokines in inflammation and metabolic disease. Nat Rev Immunol 11:85–97. doi: 10.1038/nri2921 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Owen MK, Witzmann FA, McKenney ML, Lai X, Berwick ZC, Moberly SP, Alloosh M, Sturek M, Tune JD (2013) Perivascular adipose tissue potentiates contraction of coronary vascular smooth muscle: influence of obesity. Circulation 128:9–18. doi: 10.1161/CIRCULATIONAHA.112.001238 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801. doi: 10.1152/physrev.00041.2003 CrossRefPubMedGoogle Scholar
  32. 32.
    Ozer C, Gulen S, Dilekoz E, Babul A, Ercan ZS (2006) The effect of systemic leptin administration on aorta smooth muscle responses in diabetic rats. Mol Cell Biochem 282:187–191. doi: 10.1007/s11010-006-1927-0 CrossRefPubMedGoogle Scholar
  33. 33.
    Pardina E, Ferrer R, Baena-Fustegueras J, Lecube A, Fort J, Vargas V, Catalan R, Peinado-Onsurbe J (2010) The relationships between IGF-1 and CRP, NO, leptin, and adiponectin during weight loss in the morbidly obese. Obes Surg 40:623–632. doi: 10.1007/s11695-010-0103-5 CrossRefGoogle Scholar
  34. 34.
    Payne GA, Bohlen HG, Dincer UD, Borbouse L, Tune JD (2009) Periadventitial adipose tissue impairs coronary endothelial function via PKC-beta-dependent phosphorylation of nitric oxide synthase. Am J Physiol Heart Circ Physiol 297:H460–H465. doi: 10.1152/ajpheart.00116.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Payne GA, Borbouse L, Bratz IN, Roell WC, Bohlen HG, Dick GM, Tune JD (2008) Endogenous adipose-derived factors diminish coronary endothelial function via inhibition of nitric oxide synthase. Microcirculation 15:417–426. doi: 10.1080/10739680701858447 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Payne GA, Borbouse L, Kumar S, Neeb Z, Alloosh M, Sturek M, Tune JD (2010) Epicardial perivascular adipose-derived leptin exacerbates coronary endothelial dysfunction in metabolic syndrome via a protein kinase C-β pathway. Arterioscler Thromb Vasc Biol 30:1711–1717. doi: 10.1161/ATVBAHA.110.210070 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Rikitake Y, Kim H, Huang Z, Seto M, Yano K, Asano T, Moskowitz M, Liao J (2005) Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 36:2251–2257. doi: 10.1161/01.STR.0000181077.84981.11 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rodriguez A, Fortuno A, Gomez-Ambrosi J, Zalba G, Diez J, Fruhbeck G (2007) The inhibitory effect of leptin on angiotensin II-induced vasoconstriction in vascular smooth muscle cells is mediated via a nitric oxide-dependent mechanism. Endocrinology 148:324–331. doi: 10.1210/en.2006-0940 CrossRefPubMedGoogle Scholar
  39. 39.
    Rodriguez A, Fruhbeck G, Gomez-Ambrosi J, Catalan V, Sainz N, Zalba G, Fortuno A (2006) The inhibitory effect of leptin on angiotensin II-induced vasoconstriction is blunted in spontaneously hypertensive rats. J Hypertens 24:1589–1597. doi: 10.1097/01.hjh.0000239295.17636.6e CrossRefPubMedGoogle Scholar
  40. 40.
    Rodriguez A, Gomez-Ambrosi J, Catalan V, Fortuno A, Fruhbeck G (2010) Leptin inhibits the proliferation of vascular smooth muscle cells induced by angiotensin II through nitric oxide-dependent mechanisms. Mediat Inflamm. doi: 10.1155/2010/105489 Google Scholar
  41. 41.
    Samora JB, Goodwill AG, Frisbee JC, Boegehold MA (2010) Growth-dependent changes in the contribution of carbon monoxide to arteriolar function. J Vasc Res 47:23–24. doi: 10.1159/000231718 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schafer K, Halle M, Goeschen C, Dellas C, Pynn M, Loskutoff D, Konstantinides S (2004) Leptin promtoes vascular remodeling and neointimal growth in mice. Arterioscler Thromb Vasc Biol 24:112–117. doi: 10.1161/01.ATV.0000105904.02142.e7 CrossRefPubMedGoogle Scholar
  43. 43.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White D, Hartenstein V, Eliceiri K, Tomanack P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi: 10.1038/nmeth.2019 CrossRefPubMedGoogle Scholar
  44. 44.
    Schroeter MR, Eschholz N, Herzberg S, Jerchel I, Leifheif-Nestler M, Czepluch FS, Chalikias G, Konstantinides S, Shafer K (2013) Leptin-dependent and leptin-independent paracrine effects of perivascualr adipose tissue on neointima formation. Arterioscler Thromb Vasc Biol 33:980–987. doi: 10.1161/ATVBAHA.113.301393 CrossRefPubMedGoogle Scholar
  45. 45.
    Shan J, Nguyen TB, Totary-Jain H, Dansky H, Marx SO, Marks AR (2008) Leptin-enhanced neointimal hyperplasia is reduced by mTOR and PI3K inhibitors. Proc Natl Acad Sci 105:19006–19011. doi: 10.1073/pnas.0809743105 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Shek EW, Brands MW, Hall JE (1998) Chronic leptin infusion increases arterial pressure. Hypertension 31:409–414. doi: 10.1161/01.HYP.31.1.409 CrossRefPubMedGoogle Scholar
  47. 47.
    Shibasaki I, Nishikimi T, Mochizuki Y, Yamada Y, Yoshitatsu M, Inoue Y, Kuwata T, Ogawa H, Tsuchiya G, Ishimitsu T, Fukuda H (2010) Greater expression of inflammatory cytokines, adrenomedullin, and natriuretic peptide receptor-C in epicardial adipose tissue in coronary artery disease. Regul Pept 165:210–217. doi: 10.1016/j.regpep.2010.07.169 CrossRefPubMedGoogle Scholar
  48. 48.
    Shibata R, Kai H, Seki Y, Kato S, Morimatsu M, Kaibuchi K, Imaizumi T (2001) Role of Rho-associated kinase in neointima formation after vascular injury. Circulation 103:284–289. doi: 10.1161/01.CIR.103.2.284 CrossRefPubMedGoogle Scholar
  49. 49.
    Shin HJ, Oh J, Kang SM, Lee JH, Shin MJ, Hwang KC, Jang Y, Chung JH (2005) Leptin induces hypertrophy via p38 mitogen-activated protein kinase in rat vascular smooth muscle cells. Biochem Biophys Res Commun 329:18–24. doi: 10.1016/j.bbrc.2004.12.195 CrossRefPubMedGoogle Scholar
  50. 50.
    Sturek M (2011) Ca2+ regulatory mechanisms of exercise protection against coronary artery disease in metabolic syndrome and diabetes. J Appl Physiol 111:573–586. doi: 10.1152/japplphysiol.00373 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tano JY, Schleifenbaum J, Gollasch M (2014) Perivascular adipose tissue, potassium channels, and vascular dysfunction. Arterscler Thromb Vasc Biol 34:1827–1830. doi: 10.1161/ATVBAHA.114.303032 CrossRefGoogle Scholar
  52. 52.
    Wamhoff BR, Bowles DK, McDonald OG, Sinha S, Somlyo AP, Owens GK (2004) L-type voltage-gated Ca2+ channels modulate expression of smooth muscle differentiation marker genes via a Rho kinase/myocardin/SRF-dependent mechanism. Circ Res 95:406–414. doi: 10.1161/01.RES.0000138582.36921.9e CrossRefPubMedGoogle Scholar
  53. 53.
    Withers SB, Bussey CE, Saxton SN, Melrose HM, Watkins AE, Heagerty AM (2014) Mechanisms of adiponectin-associated perivascular function in vascular disease. Arterioscler Thromb Vasc Biol 34:1637–1642. doi: 10.1161/ATVBAHA.114.303031 CrossRefPubMedGoogle Scholar
  54. 54.
    Zeidan A, Javadov S, Chakrabarti S, Karmazyn M (2008) Leptin-induced cardiomyocyte hypertrophy involves selective caveolae and RhoA/ROCK-dependent p38 MAPK translocation to nuclei. Cardiovasc Res 77:64–72. doi: 10.1093/cvr/cvm020 CrossRefPubMedGoogle Scholar
  55. 55.
    Zeidan A, Javadov S, Karmazyn M (2006) Essential role of Rho/ROCK-dependent processes and actin dynamics in mediating leptin-induced hypertrophy in rat neonatal ventricular myocytes. Cardiovasc Res 72:101–111. doi: 10.1016/j.cardiores.2006.06.024 CrossRefPubMedGoogle Scholar
  56. 56.
    Zeidan A, Paylor B, Steinhoff K, Javadov S, Rajapurohitam V, Chakrabarti S, Karmazyn M (2007) Actin cytoskeleton dynamics promotes leptin-induced vascular smooth muscle hypertrophy via RhoA/ROCK- and phosphatidylinositol 3-kinase/protein kinase B-dependent pathways. J Pharmacol Exp Ther 322:1110–1116. doi: 10.1124/jpet.107.122440 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jillian N. Noblet
    • 1
  • Adam G. Goodwill
    • 1
  • Daniel J. Sassoon
    • 1
  • Alexander M. Kiel
    • 1
    • 2
  • Johnathan D. Tune
    • 1
  1. 1.Department of Cellular and Integrative PhysiologyIndiana University School of MedicineIndianapolisUSA
  2. 2.Weldon School of Biomedical Engineering, Purdue UniversityWest LafayetteUSA

Personalised recommendations