Basic Research in Cardiology

, 110:50 | Cite as

Septic cardiomyopathy in rat LPS-induced endotoxemia: relative contribution of cellular diastolic Ca2+ removal pathways, myofibrillar biomechanics properties and action of the cardiotonic drug levosimendan

  • S. Wagner
  • S. Schürmann
  • S. Hein
  • J. Schüttler
  • O. Friedrich
Original Contribution


Cardiac dysfunction is a common complication in sepsis and is characterized by forward pump failure. Hallmarks of septic cardiomyopathy are decreased myofibrillar contractility and reduced Ca2+ sensitivity but it is still not clear whether reduced pump efficiency is predominantly a diastolic impairment. Moreover, a comprehensive picture of upstream Ca2+ handling mechanisms and downstream myosin biomechanical parameters is still missing. Ca2+-sensitizing agents in sepsis may be promising but mechanistic insights for drugs like levosimendan are scarce. Here, we used an endotoxemic LPS rat model to study mechanisms of sepsis on in vivo hemodynamics, multicellular myofibrillar Ca2+ sensitivity, in vitro cellular Ca2+ homeostasis and subcellular actomyosin interaction with intracardiac catheters, force transducers, confocal Fluo-4 Ca2+ recordings in paced cardiomyocytes, and in vitro motility assay, respectively. Left ventricular ejection fraction and myofibrillar Ca2+ sensitivity were depressed in LPS animals but restored by levosimendan. Diastolic Ca2+ transient kinetics was slowed down by LPS but ameliorated by levosimendan. Selectively blocking intracellular and sarcolemmal Ca2+ extrusion pathways revealed minor contribution of sarcoplasmic reticulum Ca2+ ATPase (SERCA) to Ca2+ transient diastole in LPS-evoked sepsis but rather depressed Na+/Ca2+ exchanger and plasmalemmal Ca2+ ATPase. This was mostly compensated by levosimendan. Actin sliding velocities were depressed in myosin heart extracts from LPS rats. We conclude that endotoxemia specifically impairs sarcolemmal diastolic Ca2+ extrusion pathways resulting in intracellular diastolic Ca2+ overload. Levosimendan, apart from stabilizing Ca2+-troponin C complexes, potently improves cellular Ca2+ extrusion in the septic heart.


Sepsis Cardiomyopathy Levosimendan Calcium Motility assay 



This work was partly supported by the ELAN Fonds of the Erlangen Medical Faculty (13-02-25-1). The authors acknowledge excellent technical help from R Galmbacher and C Weber for catheter experiments and in vitro motility assays.


  1. 1.
    Aoki Y, Hatakeyama N, Yamamoto S, Kinoshita H, Matsuda N, Hattori Y, Yamazaki M (2012) Role of ion channels in sepsis-induced atrial tachyarrhythmias in guinea pigs. Br J Pharmacol 166(1):390–400. doi:10.1111/j.1476-5381.2011.01769.x PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Bruni FD, Komwatana P, Soulsby ME, Hess ML (1978) Endotoxin and myocardial failure: role of the myofibril and venous return. Am J Physiol 235(2):H150–H156PubMedGoogle Scholar
  3. 3.
    Celes MR, Malvestio LM, Suadicani SO, Prado CM, Figueiredo MJ, Campos EC, Freitas AC, Spray DC, Tanowitz HB, da Silva JS, Rossi MA (2013) Disruption of calcium homeostasis in cardiomyocytes underlies cardiac structural and functional changes in severe sepsis. PLoS One 8(7):e66809. doi:10.1371/journal.pone.0068809 CrossRefGoogle Scholar
  4. 4.
    Ceylan-Isik AF, Zhao P, Zhang B, Xiao X, Su G, Ren J (2010) Cardiac overexpression of metallothionein rescues cardiac contractile dysfunction and endoplasmic reticulum stress but not autophagy in sepsis. J Mol Cell Cardiol 48(2):367–378. doi:10.1016/j.yjmcc.2009.11.003 PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Duncan DJ, Yang Z, Hopkins PM, Steele DS, Harrison SM (2010) TNF-alpha and IL-1beta increase Ca2 + leak from the sarcoplasmic reticulum and susceptibility arrhythmia in rat ventricular myocytes. Cell Calcium 47(4):378–386. doi:10.1016/j.ceca.2010.02.002 PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Edes I, Kiss E, Kitada Y, Powers FM, Papp JG, Kranias EG, Solaro RJ (1995) Effects of levosimendan, a cardiotonic agent targeted to troponin C, on cardiac function and on phosphorylation and Ca2 + sensitivity of cardiac myofibrils and sarcoplasmic reticulum in guinea pig heart. Circ Res 77(1):107–113. doi:10.1161/01.RES.77.1.107 CrossRefPubMedGoogle Scholar
  7. 7.
    Endoh M (2008) Cardiac Ca2+ signaling and Ca2+ sensitizers. Circ J 72:1915–1925. doi:10.1253/circj.CJ-08-0838 CrossRefPubMedGoogle Scholar
  8. 8.
    Flynn A, Chokkalingam MB, Mather PJ (2010) Sepsis-induced cardiomyopathy: a review of pathophysiologic mechanisms. Heart Fail Rev 15(6):605–611. doi:10.1007/s10741-010-9176-4 CrossRefPubMedGoogle Scholar
  9. 9.
    Gandhi A, Siedlecka U, Shah AP, Navratnarajah M, Yacoub MH, Terracciano CM (2013) The effect of SN-6, a novel sodium––calcium exchange inhibitor, on contractility and calcium handling in isolated failing rat ventricular myocytes. Cardiovasc Ther 31(6):e115–e124. doi:10.1111/1755-5922.12045 CrossRefPubMedGoogle Scholar
  10. 10.
    Gödeny I, Pollesello P, Edes I, Papp Z, Bagi Z (2013) Levosimendan and its metabolite OR-1896 elicit KATP channel-dependent dilation in resistance arteries in vivo. Pharmacol Rep 65(5):1304–1310. doi:10.1016/S1734-1140(13)71488-9 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Haikala H, Nissinen E, Etemadzadeh E, Levijoki J, Linden IB (1995) Troponin C-mediated calcium-sensitization induced by levosimendan does not impair relaxation. J Cardiovasc Pharmacol 25(5):794–801. doi:10.1097/00005344-199505000-00016 CrossRefPubMedGoogle Scholar
  12. 12.
    Hassoun SM, Marechal X, Montaigne D, Bouazza Y, Decoster B, Lancel S, Neviere R (2008) Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Crit Care Med 36(9):2590–2596. doi:10.1186/cc4854 CrossRefPubMedGoogle Scholar
  13. 13.
    Heinzel FR, Gres P, Boengler K, Duschin A, Konietzka I, Rassaf T, Snedovskaya J, Meyer S, Skyschally A, Kelm M, Heusch G, Schulz R (2008) Inducible nitric oxide expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs. Circ Res 103:1120–1127. doi:10.1161/CIRCRESAHA.108.186015 CrossRefPubMedGoogle Scholar
  14. 14.
    Hillestad V, Kramer F, Golz S, Knorr A, Andersson KB (1985) Christensen G (1985) Long-term levosimendan treatment improves systolic function and myocardial relaxation in mice with cardiomyocyte-specific disruption of the Serca2 gene. J Appl Physiol 115(10):1572–1580. doi:10.1152/japplphysiol.01044.2012 CrossRefGoogle Scholar
  15. 15.
    Hobai IA, Buys ES, Morse JC, Edgecomb J, Weiss EH, Amoundas AA, Hou X, Khandelwal AR, Siwik DA, Brouckaert P, Cohen RA, Colucci WS (2013) Cys674 sulphonylation and inhibition of L-type Ca2 + influx contribute to cardiac dysfunction in endotoxemic mice, independent of cGMP synthesis. Am J Physiol Heart Circ Physiol 305(8):H1189–H1200. doi:10.1152/ajpheart.00392.2012 PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Koesters A, Engisch KL, Rich MM (2014) Decreased cardiac excitability secondary to reduction of sodium current may be a significant contributor to reduced contractility in a rat model of sepsis. Crit Care 18(2):R54. doi:10.1186/cc13800 PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Lancaster MK, Cook SJ (1997) The effects of levosimendan on [Ca2 +]I in guinea-pig isolated ventricular myocytes. Eur J Pharmacol 339(1):97–100. doi:10.1016/S0014-2999(97)01362-9 CrossRefPubMedGoogle Scholar
  18. 18.
    Landesberg G, Gilon D, Meroz Y, Georgieva M, Levin PD, Goodman S, Avidan A, Beeri R, Weissman C, Jaffe AS, Sprung CL (2012) Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J 33:895–903. doi:10.1093/eurheartj/ehr351 PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Li C, YanG YC, Hwang GY, Kao LS, Lin CY (2014) Inhibition of reverse-mode sodium-calcium exchanger activity and apoptosis by levosimendan in human cardiomyocyte progenitor cell-derived cardiomyocytes after anoxia and reoxygenation. PLoS One 9(2):e85909. doi:10.1371/journal.pone.0085909 PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Magi S, Nasti AA, Gratteri S, Castaldo P, Bompadre S, Amoroso S, Lariccia V (2015) Gram-negative endotoxin lipopolysaccharide induces cardiac hypertrophy: detrimental role of Na(+)-Ca(2 +)-exchanger. Eur J Pharmacol 746:31–40. doi:10.1016/j.ejphar.2014.10.054 CrossRefPubMedGoogle Scholar
  21. 21.
    Morelli A, De Castro S, Teboul JL, Singer M, Ronco M, Conti G, De Luca L, Di Angelantonia E, Orecchioni A, Pandian NG, Pietropaoli P (2005) Effects of levosimendan on systemic and regional hemodynamics in septic myocardial depression. Intensive Care Med 31:638–644. doi:10.1007/s00134-005-2619-z CrossRefPubMedGoogle Scholar
  22. 22.
    Negretti N, O’Neill SC, Eisner DA (1993) The relative contributions of different intracellular and sarcolemmal systems to relaxation in rat ventricular myocytes. Cardiovasc Res 27:1826–1830. doi:10.1093/cvr/27.10.1826 CrossRefPubMedGoogle Scholar
  23. 23.
    Orme RM, Perkins GD, McAuley DF, Liu KD, Mason AJ, Morelli A, Singer M, Ashby D, Gordon AC (2014) An efficacy and mechanism evaluation study of levosimendan for the Prevention of Acute oRgan Dysfunction in Sepsis (LeoPARDS): protocol for a randomized controlled trial. Trials 15:199. doi:10.1186/1745-6215-15-199 PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Orstavik O, Ata SH, Riise J, Dahl CP, Andersen GO, Levy FO, Skomedal T, Osnes JB, Qvigstad E (2014) Inhibition of phosphodiesterase-3 by levosimendan is sufficient to account for its inotropic effect in failing human heart. Br J Pharmacol 171(23):5169–5181. doi:10.1111/bph.12647 CrossRefPubMedGoogle Scholar
  25. 25.
    Orstavik O, Manfra O, Andressen KW, Andersen GO, Skomedal T, Osnes JB, Levy FO, Krobert KA (2015) The inotropic effect of the active metabolite of levosimendan, OR-1896, is mediated through inhibition of PDE3 in rat ventricular myocardium. PLoS One 10(3):e0115547. doi:10.1371/journal.pone.0115547 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Ren J, Ren BH, Sharma AC (2002) Sepsis-induced depressed contractile function of isolated ventricular myocytes is due to altered calcium transient properties. Shock 18(3):285–288. doi:10.1097/00024382-200209000-00014 CrossRefPubMedGoogle Scholar
  27. 27.
    Rozenberg S, Besse S, Brisson H, Jozefowicz E, Kandoussi A, Mebazaa A, Riou B, Vallet B, Tavernier B (2006) Endotoxin-induced myocardial dysfunction in senescent rats. Crit Care 10(4):R124. doi:10.1186/cc5033 PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Rudiger A, Singer M (2013) The heart in sepsis: from basic mechanisms to clinical management. Curr Vasc Pharmacol 11(2):187–195. doi:10.2174/1570161111311020008 PubMedGoogle Scholar
  29. 29.
    Svensson C, Morano I, Arner A (1997) In vitro motility assay of atrial and ventricular myosin from pig. J Cell Biochem 67(2):241–247. doi:10.1002/(SICI)1097-4644(19971101)67:2<241:AID-JCB9>3.0.CO;2-X CrossRefPubMedGoogle Scholar
  30. 30.
    Szalay L, Kaszaki J, Nagy S, Boros M (1998) The role of endothelin-1 in circulatory changes during hypodynamic sepsis in the rat. Shock 10(2):123–128CrossRefPubMedGoogle Scholar
  31. 31.
    Tavernier B, Garrigue D, Boulle C, Vallet B, Adnet P (1998) Myofilament calcium sensitivity is decreased in skinned cardiac fibres of endotoxin-treated rabbits. Cardiovasc Res 38(2):472–479. doi:10.1016/S0008-6363(98)00028-5 CrossRefPubMedGoogle Scholar
  32. 32.
    Van de Sandt AM, Windler R, Gödecke A, Ohlig J, Zander S, Reinartz M, Graf J, van Faassen EE, Rassaf T, Schrader J, Kelm M, Merx MW (2013) Endothelial NOS (NOS3) impairs myocardial function in developing sepsis. Baris Res Cardiol 108:330. doi:10.1007/s00395-013-0330-8 CrossRefGoogle Scholar
  33. 33.
    Vieillard-Baron A (2011) Septic cardiomyopathy. Ann Intensive Care 1(1):6. doi:10.1186/2110-5820-1-6 CrossRefPubMedGoogle Scholar
  34. 34.
    Wagner S, Knipp S, Weber C, Hein S, Schinkel S, Walther A, Bekeredjian R, Müller OJ, Friedrich O (2012) The heart in Duchenne muscular dystrophy: early detection of contractile performance alteration. J Cell Mol Med 16(12):3028–3036. doi:10.1111/j.1582-4934.2012.01630.x PubMedCentralCrossRefPubMedGoogle Scholar
  35. 35.
    Werdan K, Müller U, Reithmann C, Pfeifer A, Hallström S, Koidl B, Schlag G (1991) Mechanisms in acute septic cardiomyopathy: evidence from isolated myocytes. Basic Res Cardiol 86(5):411–421. doi:10.1007/BF02190709 CrossRefPubMedGoogle Scholar
  36. 36.
    Wu LL, Liu MS (1992) Heart sarcolemmal Ca2 + transport in endotoxin shock: I. impairment of ATP-dependent Ca2 + transport. Mol Cell Biochem 112(2):125–133. doi:10.1007/BF00227569 CrossRefPubMedGoogle Scholar
  37. 37.
    Wu LL, Tang C, Liu MS (2001) Altered phosphorylation and calcium sensitivity of cardiac myofibrillar proteins during sepsis. Am J Physiol Regul Integr Comp Physiol 281(2):R408–R416PubMedGoogle Scholar
  38. 38.
    Yu X, Jia B, Wang F, Lv X, Peng X, Wang Y, Li H, Wang Y, Lu D, Wang H (2014) α1 adrenoceptor activation by norepinephrine inhibits LPS-induced cardiomyocyte TNF-α production via modulating ERK1/2 and NF-κB pathway. J Cell Mol Med 18(2):263–273. doi:10.1111/jcmm.12184 PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Zausig YA, Geilfus D, Missler G, Sinenr B, Graf BM, Zink W (2010) Direct cardiac effects of dobutamine, dopamine, epinephrine, and levosimendan in isolated septic rat hearts. Shock 34(3):269–274. doi:10.1097/SHK.0b013e3181cd877b CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang XH, Li GR, Bourreau JP (2007) The effect of adrenomedullin on the L-type calcium current in myocytes from septic shock rats: signaling pathway. Am J Physiol Heart Circ Physiol 293(5):H2888–H2893. doi:10.1152/ajpheart.00312.2007 CrossRefPubMedGoogle Scholar
  41. 41.
    Zhu X, Bernecker OY, Manohar NS, Haijar RJ, Hellman J, Ichinose F, Valdiva HH, Schmidt U (2005) Increased leakage of sarcoplasmic reticulum Ca2 + contributes to abnormal myocyte Ca2 + handling and shortening in sepsis. Crit Care Med 33(3):598–604. doi:10.1097/01.CCM.0000152223.27176.A6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. Wagner
    • 1
    • 2
  • S. Schürmann
    • 1
  • S. Hein
    • 3
  • J. Schüttler
    • 2
  • O. Friedrich
    • 1
  1. 1.Institute of Medical BiotechnologyFriedrich-Alexander-University Erlangen-NürnbergErlangenGermany
  2. 2.Department for AnesthesiologyUniversity Hospital Erlangen, Friedrich-Alexander-University Erlangen-NürnbergErlangenGermany
  3. 3.Medical Clinic III, CardiologyHeidelberg University HospitalsHeidelbergGermany

Personalised recommendations