Macrophages and immune cells in atherosclerosis: recent advances and novel concepts

  • Clément Cochain
  • Alma Zernecke
Invited Review


Atherosclerotic lesion-related thrombosis is the major cause of myocardial infarction and stroke, which together constitute the leading cause of mortality worldwide. The inflammatory response is considered as a predominant driving force in atherosclerotic plaque formation, growth and progression towards instability and rupture. Notably, accumulation of macrophages in the intima and emergence of a pro-inflammatory milieu are a characteristic feature of plaque progression, and these processes can be modulated by adaptive immune responses. Recently, novel evidences of onsite proliferation of macrophages in lesions and transdifferentiation of smooth muscle cells to macrophages have challenged the prevalent paradigm that macrophage accumulation mostly relies on recruitment of circulating monocytes to plaques. Furthermore, previously unrecognized roles of inflammatory cell subsets such as plasmacytoid dendritic cells, innate response activator B cells or CD8+ T cells in atherosclerosis have emerged, as well as novel mechanisms by which regulatory T cells or natural killer T cells contribute to lesion formation. Here, we review and discuss these recent advances in our understanding of inflammatory processes in atherosclerosis.


Atherosclerosis Inflammation Immunity Macrophages T cells Vascular smooth muscle cells 



This work was supported by the Deutsche Forschungsgemeinschaft (SFB688 TPA22, and ZE 827/1-2 to A.Z.).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. 1.
    Ait-Oufella H, Herbin O, Bouaziz JD, Binder CJ, Uyttenhove C, Laurans L, Taleb S, Van Vre E, Esposito B, Vilar J, Sirvent J, Van Snick J, Tedgui A, Tedder TF, Mallat Z (2010) B cell depletion reduces the development of atherosclerosis in mice. J Exp Med 207:1579–1587. doi: 10.1084/jem.20100155 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Ait-Oufella H, Sage AP, Mallat Z, Tedgui A (2014) Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ Res 114:1640–1660. doi: 10.1161/CIRCRESAHA.114.302761 PubMedCrossRefGoogle Scholar
  3. 3.
    Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, Merval R, Esposito B, Cohen JL, Fisson S, Flavell RA, Hansson GK, Klatzmann D, Tedgui A, Mallat Z (2006) Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 12:178–180. doi: 10.1038/nm1343 PubMedCrossRefGoogle Scholar
  4. 4.
    Allahverdian S, Chehroudi AC, McManus BM, Abraham T, Francis GA (2014) Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation 129:1551–1559. doi: 10.1161/CIRCULATIONAHA.113.005015 PubMedCrossRefGoogle Scholar
  5. 5.
    Andreeva ER, Pugach IM, Orekhov AN (1997) Subendothelial smooth muscle cells of human aorta express macrophage antigen in situ and in vitro. Atherosclerosis 135:19–27PubMedCrossRefGoogle Scholar
  6. 6.
    Auffray C, Sieweke MH, Geissmann F (2009) Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 27:669–692. doi: 10.1146/annurev.immunol.021908.132557 PubMedCrossRefGoogle Scholar
  7. 7.
    Boring L, Gosling J, Cleary M, Charo IF (1998) Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–897. doi: 10.1038/29788 PubMedCrossRefGoogle Scholar
  8. 8.
    Brennan PJ, Brigl M, Brenner MB (2013) Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 13:101–117. doi: 10.1038/nri3369 PubMedCrossRefGoogle Scholar
  9. 9.
    Clement M, Guedj K, Andreata F, Morvan M, Bey L, Khallou-Laschet J, Gaston AT, Delbosc S, Alsac JM, Bruneval P, Deschildre C, Le Borgne M, Castier Y, Kim HJ, Cantor H, Michel JB, Caligiuri G, Nicoletti A (2015) Control of the T Follicular Helper-Germinal Center B-cell axis by CD8+ regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation 131:560–570. doi: 10.1161/CIRCULATIONAHA.114.010988 PubMedCrossRefGoogle Scholar
  10. 10.
    Cochain C, Chaudhari SM, Koch M, Wiendl H, Eckstein HH, Zernecke A (2014) Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS One 9:e93280. doi: 10.1371/journal.pone.0093280 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Colin S, Chinetti-Gbaguidi G, Staels B (2014) Macrophage phenotypes in atherosclerosis. Immunol Rev 262:153–166. doi: 10.1111/imr.12218 PubMedCrossRefGoogle Scholar
  12. 12.
    Combadiere C, Potteaux S, Rodero M, Simon T, Pezard A, Esposito B, Merval R, Proudfoot A, Tedgui A, Mallat Z (2008) Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117:1649–1657. doi: 10.1161/CIRCULATIONAHA.107.745091 PubMedCrossRefGoogle Scholar
  13. 13.
    Courties G, Herisson F, Sager HB, Heidt T, Ye Y, Wei Y, Sun Y, Severe N, Dutta P, Scharff J, Scadden DT, Weissleder R, Swirski FK, Moskowitz MA, Nahrendorf M (2015) Ischemic stroke activates hematopoietic bone marrow stem cells. Circ Res 116:407–417. doi: 10.1161/CIRCRESAHA.116.305207 PubMedCrossRefGoogle Scholar
  14. 14.
    Daissormont IT, Christ A, Temmerman L, Sampedro Millares S, Seijkens T, Manca M, Rousch M, Poggi M, Boon L, van der Loos C, Daemen M, Lutgens E, Halvorsen B, Aukrust P, Janssen E, Biessen EA (2011) Plasmacytoid dendritic cells protect against atherosclerosis by tuning T-cell proliferation and activity. Circ Res 109:1387–1395. doi: 10.1161/CIRCRESAHA.111.256529 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Dinh TN, Kyaw TS, Kanellakis P, To K, Tipping P, Toh BH, Bobik A, Agrotis A (2012) Cytokine therapy with interleukin-2/anti-interleukin-2 monoclonal antibody complexes expands CD4+CD25+Foxp3+ regulatory T cells and attenuates development and progression of atherosclerosis. Circulation 126:1256–1266. doi: 10.1161/CIRCULATIONAHA.112.099044 PubMedCrossRefGoogle Scholar
  16. 16.
    Doring Y, Manthey HD, Drechsler M, Lievens D, Megens RT, Soehnlein O, Busch M, Manca M, Koenen RR, Pelisek J, Daemen MJ, Lutgens E, Zenke M, Binder CJ, Weber C, Zernecke A (2012) Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 125:1673–1683. doi: 10.1161/CIRCULATIONAHA.111.046755 PubMedCrossRefGoogle Scholar
  17. 17.
    Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS, Iwamoto Y, Thompson B, Carlson AL, Heidt T, Majmudar MD, Lasitschka F, Etzrodt M, Waterman P, Waring MT, Chicoine AT, van der Laan AM, Niessen HW, Piek JJ, Rubin BB, Butany J, Stone JR, Katus HA, Murphy SA, Morrow DA, Sabatine MS, Vinegoni C, Moskowitz MA, Pittet MJ, Libby P, Lin CP, Swirski FK, Weissleder R, Nahrendorf M (2012) Myocardial infarction accelerates atherosclerosis. Nature 487:325–329. doi: 10.1038/nature11260 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Elhage R, Gourdy P, Brouchet L, Jawien J, Fouque MJ, Fievet C, Huc X, Barreira Y, Couloumiers JC, Arnal JF, Bayard F (2004) Deleting TCR alpha beta+ or CD4+ T lymphocytes leads to opposite effects on site-specific atherosclerosis in female apolipoprotein E-deficient mice. Am J Pathol 165:2013–2018PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Erbel C, Akhavanpoor M, Okuyucu D, Wangler S, Dietz A, Zhao L, Stellos K, Little KM, Lasitschka F, Doesch A, Hakimi M, Dengler TJ, Giese T, Blessing E, Katus HA, Gleissner CA (2014) IL-17A influences essential functions of the monocyte/macrophage lineage and is involved in advanced murine and human atherosclerosis. J Immunol 193:4344–4355. doi: 10.4049/jimmunol.1400181 PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Erbel C, Tyka M, Helmes CM, Akhavanpoor M, Rupp G, Domschke G, Linden F, Wolf A, Doesch A, Lasitschka F, Katus HA, Gleissner CA (2015) CXCL4-induced plaque macrophages can be specifically identified by co-expression of MMP7+S100A8+ in vitro and in vivo. Innate Immun 21:255–265. doi: 10.1177/1753425914526461 PubMedCrossRefGoogle Scholar
  21. 21.
    Erbel C, Wolf A, Lasitschka F, Linden F, Domschke G, Akhavanpoor M, Doesch AO, Katus HA, Gleissner CA (2015) Prevalence of M4 macrophages within human coronary atherosclerotic plaques is associated with features of plaque instability. Int J Cardiol 186:219–225. doi: 10.1016/j.ijcard.2015.03.151 PubMedCrossRefGoogle Scholar
  22. 22.
    Feil S, Fehrenbacher B, Lukowski R, Essmann F, Schulze-Osthoff K, Schaller M, Feil R (2014) Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis. Circ Res 115:662–667. doi: 10.1161/CIRCRESAHA.115.304634 PubMedCrossRefGoogle Scholar
  23. 23.
    Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM (2003) Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198:267–279. doi: 10.1084/jem.20030324 PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404. doi: 10.1038/nri3671 PubMedCrossRefGoogle Scholar
  25. 25.
    Gleissner CA, Shaked I, Erbel C, Bockler D, Katus HA, Ley K (2010) CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages. Circ Res 106:203–211. doi: 10.1161/CIRCRESAHA.109.199505 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Gomez D, Owens GK (2012) Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc Res 95:156–164. doi: 10.1093/cvr/cvs115 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Gotsman I, Grabie N, Gupta R, Dacosta R, MacConmara M, Lederer J, Sukhova G, Witztum JL, Sharpe AH, Lichtman AH (2006) Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation 114:2047–2055. doi: 10.1161/CIRCULATIONAHA.106.633263 PubMedCrossRefGoogle Scholar
  28. 28.
    Hansson GK, Jonasson L (2009) The discovery of cellular immunity in the atherosclerotic plaque. Arterioscler Thromb Vasc Biol 29:1714–1717. doi: 10.1161/ATVBAHA.108.179713 PubMedCrossRefGoogle Scholar
  29. 29.
    Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A, von Zur Muhlen C, Bode C, Fricchione GL, Denninger J, Lin CP, Vinegoni C, Libby P, Swirski FK, Weissleder R, Nahrendorf M (2014) Chronic variable stress activates hematopoietic stem cells. Nat Med 20:754–758. doi: 10.1038/nm.3589 PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Hilgendorf I, Theurl I, Gerhardt LM, Robbins CS, Weber GF, Gonen A, Iwamoto Y, Degousee N, Holderried TA, Winter C, Zirlik A, Lin HY, Sukhova GK, Butany J, Rubin BB, Witztum JL, Libby P, Nahrendorf M, Weissleder R, Swirski FK (2014) Innate response activator B cells aggravate atherosclerosis by stimulating T helper-1 adaptive immunity. Circulation 129:1677–1687. doi: 10.1161/CIRCULATIONAHA.113.006381 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Hoeffel G, Ripoche AC, Matheoud D, Nascimbeni M, Escriou N, Lebon P, Heshmati F, Guillet JG, Gannage M, Caillat-Zucman S, Casartelli N, Schwartz O, De la Salle H, Hanau D, Hosmalin A, Maranon C (2007) Antigen crosspresentation by human plasmacytoid dendritic cells. Immunity 27:481–492. doi: 10.1016/j.immuni.2007.07.021 PubMedCrossRefGoogle Scholar
  32. 32.
    Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W, Kensler T, Ravichandran KS, Isakson BE, Wamhoff BR, Leitinger N (2010) Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107:737–746. doi: 10.1161/CIRCRESAHA.109.215715 PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Keul P, Lucke S, von Wnuck Lipinski K, Bode C, Graler M, Heusch G, Levkau B (2011) Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/macrophages in inflammation and atherosclerosis. Circ Res 108:314–323. doi: 10.1161/CIRCRESAHA.110.235028 PubMedCrossRefGoogle Scholar
  34. 34.
    Kim HJ, Verbinnen B, Tang X, Lu L, Cantor H (2010) Inhibition of follicular T-helper cells by CD8(+) regulatory T cells is essential for self tolerance. Nature 467:328–332. doi: 10.1038/nature09370 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Klingenberg R, Gerdes N, Badeau RM, Gistera A, Strodthoff D, Ketelhuth DF, Lundberg AM, Rudling M, Nilsson SK, Olivecrona G, Zoller S, Lohmann C, Luscher TF, Jauhiainen M, Sparwasser T, Hansson GK (2013) Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J Clin Invest 123:1323–1334. doi: 10.1172/JCI63891 PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Kolbus D, Ljungcrantz I, Soderberg I, Alm R, Bjorkbacka H, Nilsson J, Fredrikson GN (2012) TAP1-deficiency does not alter atherosclerosis development in Apoe−/− mice. PLoS One 7:e33932. doi: 10.1371/journal.pone.0033932 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Kyaw T, Tay C, Hosseini H, Kanellakis P, Gadowski T, MacKay F, Tipping P, Bobik A, Toh BH (2012) Depletion of B2 but not B1a B cells in BAFF receptor-deficient ApoE mice attenuates atherosclerosis by potently ameliorating arterial inflammation. PLoS One 7:e29371. doi: 10.1371/journal.pone.0029371 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Kyaw T, Tay C, Khan A, Dumouchel V, Cao A, To K, Kehry M, Dunn R, Agrotis A, Tipping P, Bobik A, Toh BH (2010) Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J Immunol 185:4410–4419. doi: 10.4049/jimmunol.1000033 PubMedCrossRefGoogle Scholar
  39. 39.
    Kyaw T, Tay C, Krishnamurthi S, Kanellakis P, Agrotis A, Tipping P, Bobik A, Toh BH (2011) B1a B lymphocytes are atheroprotective by secreting natural IgM that increases IgM deposits and reduces necrotic cores in atherosclerotic lesions. Circ Res 109:830–840. doi: 10.1161/CIRCRESAHA.111.248542 PubMedCrossRefGoogle Scholar
  40. 40.
    Kyaw T, Winship A, Tay C, Kanellakis P, Hosseini H, Cao A, Li P, Tipping P, Bobik A, Toh BH (2013) Cytotoxic and proinflammatory CD8+ T lymphocytes promote development of vulnerable atherosclerotic plaques in apoE-deficient mice. Circulation 127:1028–1039. doi: 10.1161/CIRCULATIONAHA.112.001347 PubMedCrossRefGoogle Scholar
  41. 41.
    Legein B, Temmerman L, Biessen EA, Lutgens E (2013) Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci 70:3847–3869. doi: 10.1007/s00018-013-1289-1 PubMedCrossRefGoogle Scholar
  42. 42.
    Lessner SM, Prado HL, Waller EK, Galis ZS (2002) Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model. Am J Pathol 160:2145–2155. doi: 10.1016/S0002-9440(10)61163-7 PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Li Y, To K, Kanellakis P, Hosseini H, Deswaerte V, Tipping P, Smyth MJ, Toh BH, Bobik A, Kyaw T (2015) CD4+ natural killer T cells potently augment aortic root atherosclerosis by perforin- and granzyme B-dependent cytotoxicity. Circ Res 116:245–254. doi: 10.1161/CIRCRESAHA.116.304734 PubMedCrossRefGoogle Scholar
  44. 44.
    Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Barker-Collo S, Bartels DH, Bell ML, Benjamin EJ, Bennett D, Bhalla K, Bikbov B, Bin Abdulhak A, Birbeck G, Blyth F, Bolliger I, Boufous S, Bucello C, Burch M, Burney P, Carapetis J, Chen H, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahodwala N, De Leo D, Degenhardt L, Delossantos A, Denenberg J, Des Jarlais DC, Dharmaratne SD, Dorsey ER, Driscoll T, Duber H, Ebel B, Erwin PJ, Espindola P, Ezzati M, Feigin V, Flaxman AD, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabriel SE, Gakidou E, Gaspari F, Gillum RF, Gonzalez-Medina D, Halasa YA, Haring D, Harrison JE, Havmoeller R, Hay RJ, Hoen B, Hotez PJ, Hoy D, Jacobsen KH, James SL, Jasrasaria R, Jayaraman S, Johns N, Karthikeyan G, Kassebaum N, Keren A, Khoo JP, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lipnick M, Lipshultz SE, Ohno SL et al (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2095–2128. doi: 10.1016/S0140-6736(12)61728-0 PubMedCrossRefGoogle Scholar
  45. 45.
    Ludewig B, Freigang S, Jaggi M, Kurrer MO, Pei YC, Vlk L, Odermatt B, Zinkernagel RM, Hengartner H (2000) Linking immune-mediated arterial inflammation and cholesterol-induced atherosclerosis in a transgenic mouse model. Proc Natl Acad Sci USA 97:12752–12757. doi: 10.1073/pnas.220427097 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Lutgens E, de Muinck ED, Kitslaar PJ, Tordoir JH, Wellens HJ, Daemen MJ (1999) Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc Res 41:473–479PubMedCrossRefGoogle Scholar
  47. 47.
    Macritchie N, Grassia G, Sabir SR, Maddaluno M, Welsh P, Sattar N, Ialenti A, Kurowska-Stolarska M, McInnes IB, Brewer JM, Garside P, Maffia P (2012) Plasmacytoid dendritic cells play a key role in promoting atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 32:2569–2579. doi: 10.1161/ATVBAHA.112.251314 PubMedCrossRefGoogle Scholar
  48. 48.
    Metelitsa LS, Naidenko OV, Kant A, Wu HW, Loza MJ, Perussia B, Kronenberg M, Seeger RC (2001) Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 167:3114–3122PubMedCrossRefGoogle Scholar
  49. 49.
    Mohanta SK, Yin C, Peng L, Srikakulapu P, Bontha V, Hu D, Weih F, Weber C, Gerdes N, Habenicht AJ (2014) Artery tertiary lymphoid organs contribute to innate and adaptive immune responses in advanced mouse atherosclerosis. Circ Res 114:1772–1787. doi: 10.1161/CIRCRESAHA.114.301137 PubMedCrossRefGoogle Scholar
  50. 50.
    Nakai Y, Iwabuchi K, Fujii S, Ishimori N, Dashtsoodol N, Watano K, Mishima T, Iwabuchi C, Tanaka S, Bezbradica JS, Nakayama T, Taniguchi M, Miyake S, Yamamura T, Kitabatake A, Joyce S, Van Kaer L, Onoe K (2004) Natural killer T cells accelerate atherogenesis in mice. Blood 104:2051–2059. doi: 10.1182/blood-2003-10-3485 PubMedCrossRefGoogle Scholar
  51. 51.
    Niessner A, Sato K, Chaikof EL, Colmegna I, Goronzy JJ, Weyand CM (2006) Pathogen-sensing plasmacytoid dendritic cells stimulate cytotoxic T-cell function in the atherosclerotic plaque through interferon-alpha. Circulation 114:2482–2489. doi: 10.1161/CIRCULATIONAHA.106.642801 PubMedCrossRefGoogle Scholar
  52. 52.
    Olofsson PS, Soderstrom LA, Wagsater D, Sheikine Y, Ocaya P, Lang F, Rabu C, Chen L, Rudling M, Aukrust P, Hedin U, Paulsson-Berne G, Sirsjo A, Hansson GK (2008) CD137 is expressed in human atherosclerosis and promotes development of plaque inflammation in hypercholesterolemic mice. Circulation 117:1292–1301. doi: 10.1161/CIRCULATIONAHA.107.699173 PubMedCrossRefGoogle Scholar
  53. 53.
    Potteaux S, Gautier EL, Hutchison SB, van Rooijen N, Rader DJ, Thomas MJ, Sorci-Thomas MG, Randolph GJ (2011) Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe−/− mice during disease regression. J Clin Invest 121:2025–2036. doi: 10.1172/JCI43802 PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Psaltis PJ, Harbuzariu A, Delacroix S, Witt TA, Holroyd EW, Spoon DB, Hoffman SJ, Pan S, Kleppe LS, Mueske CS, Gulati R, Sandhu GS, Simari RD (2012) Identification of a monocyte-predisposed hierarchy of hematopoietic progenitor cells in the adventitia of postnatal murine aorta. Circulation 125:592–603. doi: 10.1161/CIRCULATIONAHA.111.059360 PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Psaltis PJ, Puranik AS, Spoon DB, Chue CD, Hoffman SJ, Witt TA, Delacroix S, Kleppe LS, Mueske CS, Pan S, Gulati R, Simari RD (2014) Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature. Circ Res 115:364–375. doi: 10.1161/CIRCRESAHA.115.303299 PubMedCrossRefGoogle Scholar
  56. 56.
    Randolph GJ (2013) Proliferating macrophages prevail in atherosclerosis. Nat Med 19:1094–1095. doi: 10.1038/nm.3316 PubMedCrossRefGoogle Scholar
  57. 57.
    Rauch PJ, Chudnovskiy A, Robbins CS, Weber GF, Etzrodt M, Hilgendorf I, Tiglao E, Figueiredo JL, Iwamoto Y, Theurl I, Gorbatov R, Waring MT, Chicoine AT, Mouded M, Pittet MJ, Nahrendorf M, Weissleder R, Swirski FK (2012) Innate response activator B cells protect against microbial sepsis. Science 335:597–601. doi: 10.1126/science.1215173 PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Recalde A, Richart A, Guerin C, Cochain C, Zouggari Y, Yin KH, Vilar J, Drouet I, Levy B, Varoquaux O, Silvestre JS (2012) Sympathetic nervous system regulates bone marrow-derived cell egress through endothelial nitric oxide synthase activation: role in postischemic tissue remodeling. Arterioscler Thromb Vasc Biol 32:643–653. doi: 10.1161/ATVBAHA.111.244392 PubMedCrossRefGoogle Scholar
  59. 59.
    Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V (2011) Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 29:163–183. doi: 10.1146/annurev-immunol-031210-101345 PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Rekhter MD, Gordon D (1995) Active proliferation of different cell types, including lymphocytes, in human atherosclerotic plaques. Am J Pathol 147:668–677PubMedCentralPubMedGoogle Scholar
  61. 61.
    Robbins CS, Chudnovskiy A, Rauch PJ, Figueiredo JL, Iwamoto Y, Gorbatov R, Etzrodt M, Weber GF, Ueno T, van Rooijen N, Mulligan-Kehoe MJ, Libby P, Nahrendorf M, Pittet MJ, Weissleder R, Swirski FK (2012) Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 125:364–374. doi: 10.1161/CIRCULATIONAHA.111.061986 PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Robbins CS, Hilgendorf I, Weber GF, Theurl I, Iwamoto Y, Figueiredo JL, Gorbatov R, Sukhova GK, Gerhardt LM, Smyth D, Zavitz CC, Shikatani EA, Parsons M, van Rooijen N, Lin HY, Husain M, Libby P, Nahrendorf M, Weissleder R, Swirski FK (2013) Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med 19:1166–1172. doi: 10.1038/nm.3258 PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Rong JX, Shapiro M, Trogan E, Fisher EA (2003) Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci USA 100:13531–13536. doi: 10.1073/pnas.1735526100 PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Rosenfeld ME, Ross R (1990) Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arterioscler Thromb Vasc Biol 10:680–687. doi: 10.1161/01.ATV.10.5.680 CrossRefGoogle Scholar
  65. 65.
    Rosengren A, Hawken S, Ounpuu S, Sliwa K, Zubaid M, Almahmeed WA, Blackett KN, Sitthi-amorn C, Sato H, Yusuf S (2004) Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case–control study. Lancet 364:953–962. doi: 10.1016/S0140-6736(04)17019-0 PubMedCrossRefGoogle Scholar
  66. 66.
    Rossjohn J, Pellicci DG, Patel O, Gapin L, Godfrey DI (2012) Recognition of CD1d-restricted antigens by natural killer T cells. Nat Rev Immunol 12:845–857. doi: 10.1038/nri3328 PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Saederup N, Chan L, Lira SA, Charo IF (2008) Fractalkine deficiency markedly reduces macrophage accumulation and atherosclerotic lesion formation in CCR2−/− mice: evidence for independent chemokine functions in atherogenesis. Circulation 117:1642–1648. doi: 10.1161/CIRCULATIONAHA.107.743872 PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Sage A, Murphy DM, Maffia P, Masters LM, Sabir SR, Baker LL, Cambrook H, Finigan AJ, Ait-Oufella H, Grassia G, Harrison JE, Ludewig B, Reith W, Hansson GK, Reizis B, Hugues S, Mallat Z (2014) MHC class II-restricted Antigen presentation by plasmacytoid dendritic cells drives pro-atherogenic T cell immunity. Circulation. doi: 10.1161/CIRCULATIONAHA.114.011090 PubMedCentralGoogle Scholar
  69. 69.
    Sage AP, Tsiantoulas D, Baker L, Harrison J, Masters L, Murphy D, Loinard C, Binder CJ, Mallat Z (2012) BAFF receptor deficiency reduces the development of atherosclerosis in mice–brief report. Arterioscler Thromb Vasc Biol 32:1573–1576. doi: 10.1161/ATVBAHA.111.244731 PubMedCrossRefGoogle Scholar
  70. 70.
    Salio M, Palmowski MJ, Atzberger A, Hermans IF, Cerundolo V (2004) CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. J Exp Med 199:567–579. doi: 10.1084/jem.20031059 PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Sasaki N, Yamashita T, Takeda M, Shinohara M, Nakajima K, Tawa H, Usui T, Hirata K (2009) Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation 120:1996–2005. doi: 10.1161/CIRCULATIONAHA.109.863431 PubMedCrossRefGoogle Scholar
  72. 72.
    Semmling V, Lukacs-Kornek V, Thaiss CA, Quast T, Hochheiser K, Panzer U, Rossjohn J, Perlmutter P, Cao J, Godfrey DI, Savage PB, Knolle PA, Kolanus W, Forster I, Kurts C (2010) Alternative cross-priming through CCL17–CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat Immunol 11:313–320. doi: 10.1038/ni.1848 PubMedCrossRefGoogle Scholar
  73. 73.
    Soehnlein O, Drechsler M, Doring Y, Lievens D, Hartwig H, Kemmerich K, Ortega-Gomez A, Mandl M, Vijayan S, Projahn D, Garlichs CD, Koenen RR, Hristov M, Lutgens E, Zernecke A, Weber C (2013) Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes. EMBO Mol Med 5:471–481. doi: 10.1002/emmm.201201717 PubMedCentralPubMedCrossRefGoogle Scholar
  74. 74.
    Strong A, Patel K, Rader DJ (2014) Sortilin and lipoprotein metabolism: making sense out of complexity. Curr Opin Lipidol 25:350–357. doi: 10.1097/MOL.0000000000000110 PubMedCrossRefGoogle Scholar
  75. 75.
    Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW, Weissleder R, Pittet MJ (2007) Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 117:195–205. doi: 10.1172/JCI29950 PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325:612–616. doi: 10.1126/science.1175202 PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J, Garin A, Liu J, Mack M, van Rooijen N, Lira SA, Habenicht AJ, Randolph GJ (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194. doi: 10.1172/JCI28549 PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Taleb S, Tedgui A, Mallat Z (2014) IL-17 and Th17 Cells in Atherosclerosis: subtle and Contextual Roles. Arterioscler Thromb Vasc Biol. doi: 10.1161/ATVBAHA.114.303567 PubMedGoogle Scholar
  79. 79.
    Tupin E, Nicoletti A, Elhage R, Rudling M, Ljunggren HG, Hansson GK, Berne GP (2004) CD1d-dependent activation of NKT cells aggravates atherosclerosis. J Exp Med 199:417–422. doi: 10.1084/jem.20030997 PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Weber C, Meiler S, Doring Y, Koch M, Drechsler M, Megens RT, Rowinska Z, Bidzhekov K, Fecher C, Ribechini E, van Zandvoort MA, Binder CJ, Jelinek I, Hristov M, Boon L, Jung S, Korn T, Lutz MB, Forster I, Zenke M, Hieronymus T, Junt T, Zernecke A (2011) CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J Clin Invest 121:2898–2910. doi: 10.1172/JCI44925 PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17:1410–1422. doi: 10.1038/nm.2538 PubMedCrossRefGoogle Scholar
  82. 82.
    Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Imunol 8:802–815. doi: 10.1038/nri2415 CrossRefGoogle Scholar
  83. 83.
    Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7:77–86. doi: 10.1038/nrcardio.2009.228 PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Zernecke A, Weber C (2014) Chemokines in atherosclerosis: proceedings resumed. Arterioscler Thromb Vasc Biol 34:742–750. doi: 10.1161/ATVBAHA.113.301655 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Clinical Biochemistry and PathobiochemistryUniversity Hospital WürzburgWürzburgGermany

Personalised recommendations