Grb2-associated binder 1 is essential for cardioprotection against ischemia/reperfusion injury

  • Lulu Sun
  • Chao Chen
  • Beibei Jiang
  • Yanli Li
  • Qiuping Deng
  • Min Sun
  • Xiangbo An
  • Xiao Yang
  • Ying Yang
  • Rongli Zhang
  • Yao Lu
  • De-Sheng Zhu
  • Yingqing Huo
  • Gen-Sheng Feng
  • Youyi ZhangEmail author
  • Jincai LuoEmail author
Original Contribution


We have shown recently that endothelial Grb-2-associated binder 1 (Gab1), an intracellular scaffolding adaptor, has a protective effect against limb ischemia via mediating angiogenic signaling pathways. However, the role of Gab1 in cardiac ischemia/reperfusion (I/R) injury remains unknown. In this study, we show that Gab1 is required for cardioprotection against I/R injury. I/R injury led to remarkable phosphorylation of Gab1 in cardiomyocytes. Compared with controls, the mice with cardiomyocyte-specific deletion of Gab1 gene (CGKO mice) exhibited an increase in infarct size and a decrease in cardiac function after I/R injury. Consistently, in hearts of CGKO mice subjected to I/R, the activation of caspase 3 and myocardial apoptosis was markedly enhanced whereas the activation of protein kinase B (Akt) and mitogen-activated protein kinase (MAPK), which are critical for cardiomyocyte survival, was attenuated. Oxidative stress is regarded as a major contributor to myocardial I/R injury. To examine the role of Gab1 in oxidative stress directly, isolated adult cardiomyocytes were subject to oxidant hydrogen peroxide and the cardioprotective effects of Gab1 were confirmed. Furthermore, we found that the phosphorylation of Gab1 and Gab1-mediated activation of Akt and MAPK by oxidative stress was suppressed by ErbB receptor and Src kinase inhibitors, accompanied by an increase in apoptotic cell death. In conclusion, our results suggest that Gab1 is essential for cardioprotection against I/R oxidative injury via mediating survival signaling.


Gab1 Ischemia/reperfusion injury Cardioprotection Cell survival 



We thank Drs. Xiaocheng Gu and Iain C. Bruce for helpful discussions and critical comments. This study was supported by research grants from National Science Foundation of China (91339111, 81170098, and Project 31221002), the Major State Basic Research Development Programs of China (2007CB512100), and Beijing Municipal Science Funds (5082009) to J.L.; the National Basic Research Program of China (2011CB503903), National Natural Science Foundation of China (81030001) and Projects for International Cooperation and Exchanges NSFC (30910103902) to Y.Z.; the Key Project for Drug Discovery and Development in China (2009ZX09501-027) to X.Y. and a National Institutes of Health Research Grant to G.S.F. (NIHR01HL096125).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

395_2014_420_MOESM1_ESM.tif (13.1 mb)
Online resource 1 The time course of the ratios of phosphorylation levels of Erk and Akt in ischemia area and non-ischemia area in rat hearts subjected to I/R. The relative band intensities of phosphor-Erk/Akt and total Erk/Akt were measured by NIH imaging system and normalized to the values of GAPDH loading control (*p<0.05). n = 3 per group (TIFF 13392 kb)
395_2014_420_MOESM2_ESM.tif (14.1 mb)
Online resource 2 The activations of Akt and MAPK were significantly reduced in Gab1-deficient hearts exposed to the ischemia (30 min) and reperfusion at early time points. a The phosphorylation of Gab1 and the activation of its downstream signaling pathways in the hearts subject to the ischemia of 30 min and reperfusion at early time points. b The activations of Akt and MAPK were significantly reduced in Gab1-deficient hearts exposed to the ischemia (30 min) and reperfusion at 2.5 min. Statistic analysis of the intensities of phosphor-Erk/Akt and total Erk/Akt was measured by NIH imaging system and normalized to the values of GAPDH loading control. (*p<0.05, **p<0.01) NS, no significant difference. n = 4 per group (TIFF 14442 kb)
395_2014_420_MOESM3_ESM.tif (15.5 mb)
Online resource 3 CGKO mice displayed normal cardiac vasculatures. a Representative photographs of heart angiography (left) and statistic analysis of the length of left anterior descending artery (red arrows) (right). NS, no significant difference. n = 5 per group. b Representative photographs of section HE staining of the heart. The vessels are stained with the antibody against CD31, an endothelial specific marker. Insets show magnificent pictures. (TIFF 15843 kb)
395_2014_420_MOESM4_ESM.tif (15 mb)
Online resource 4 No difference in the apoptosis of endothelial cells in the hearts of CGKO and CTR mice after I/R (I, 30 min; R, 2 h). a The representative images of CD31 (brown) and TUNEL (green) double staining analysis of non-ischemia area (N) and ischemia area (A) of the hearts from CGKO and CTR mice after I/R. The nuclei were counterstained with hematoxylin (blue). b The percentage of TUNEL-positive endothelial cells among all the apoptotic cells in ischemic area that includes infarct and peri-infarct border zones. NS, no significant difference. Scale bar = 20 μm. n = 4 per group (TIFF 15397 kb)
395_2014_420_MOESM5_ESM.tif (17.3 mb)
Online resource 5 No apoptotic inflammatory cells with the markers of CD45 (brown, a) and Mac2 (brown, b) in the hearts of CGKO and CTR mice after I/R (I, 30 min; R, 2 h). The representative double staining images show inflammatory cells (brown) and apoptotic cells (TUNEL, green) with hematoxylin (blue) for counterstaining nuclei. Scale bar = 20 μm. n = 4 per group (TIFF 17754 kb)
395_2014_420_MOESM6_ESM.tif (14.2 mb)
Online resource 6 No difference in the production of oxidative species in the heart of CGKO and CTR mice before and after I/R injury. a Representative photographs of heart horizontal sections stained with Dihydroethidium for oxidative species (DHE, red) and DAPI for nuclei (Blue). N: non-ischemia area; A: ischemia area. b Statistic analysis of relative fluorescence intensity of DHE staining. NS, no significant difference. Scale bar = 50 μm. n = 3 per group (TIFF 14565 kb)
395_2014_420_MOESM7_ESM.tif (13.5 mb)
Online resource 7 No difference in the survival rate of cardiac endothelial cells, which were isolated from CGKO and CTR mice, under oxidative stress. Representative morphological images (top panel) and quantitative survival rates (bottom panel) of endothelial cells isolated from adult CGKO and CTR mice were treated with or without H2O2 (100 μM) for 8 hrs and subject to TUNEL analysis (green) and CD31 staining (red). NS, no significant difference. n = 4 per group (TIFF 13840 kb)
395_2014_420_MOESM8_ESM.doc (34 kb)
Supplementary material 8 (DOC 47 kb)


  1. 1.
    Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M, Shiojima I, Hiroi Y, Yazaki Y (1997) Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Investig 100:1813–1821. doi: 10.1172/JCI119709 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Bard-Chapeau EA, Hevener AL, Long S, Zhang EE, Olefsky JM, Feng GS (2005) Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action. Nat Med 11:567–571. doi: 10.1038/nm1227 PubMedCrossRefGoogle Scholar
  3. 3.
    Bell Robert M, Yellon Derek M (2012) Conditioning the whole heart—not just the cardiomyocyte. J Mol Cell Cardiol 53:24–32. doi: 10.1016/j.yjmcc.2012.04.001 PubMedCrossRefGoogle Scholar
  4. 4.
    Behrends M, Schulz R, Post H, Alexandrov A, Belosjorow S, Michel MC, Heusch G (2000) Inconsistent relation of MAPK activation to infarct size reduction by ischemic preconditioning in pigs. Am J Physiol Heart Circ Physiol 279:H1111–H1119PubMedGoogle Scholar
  5. 5.
    Bolli R, Becker L, Gross G, Mentzer R Jr, Balshaw D, Lathrop DA, NHLBI Working Group on the Translation of Therapies for Protecting the Heart from Ischemia (2004) Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res 95:125–134. doi: 10.1161/01.RES.0000137171.97172.d7 PubMedCrossRefGoogle Scholar
  6. 6.
    Chan PC, Sudhakar JN, Lai CC, Chen HC (2010) Differential phosphorylation of the docking protein Gab1 by c-Src and the hepatocyte growth factor receptor regulates different aspects of cell functions. Oncogene 29:698–710. doi: 10.1038/onc.2009.363 PubMedCrossRefGoogle Scholar
  7. 7.
    Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744. doi: 10.1126/science.8235594 PubMedCrossRefGoogle Scholar
  8. 8.
    Dhalla NS, Elmoselhi AB, Hata T, Makino N (2000) Status of myocardial antioxidants in ischemia–reperfusion injury. Cardiovasc Res 47:446–456. doi: 10.1016/S0008-6363(00)00078-X PubMedCrossRefGoogle Scholar
  9. 9.
    Fan WJ, van Vuuren D, Genade S, Lochner A (2010) Kinases and phosphatases in ischaemic preconditioning: a re-evaluation. Basic Res Cardiol 105:495–511. doi: 10.1007/s00395-010-0086-3 PubMedCrossRefGoogle Scholar
  10. 10.
    Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101:660–667. doi: 10.1161/01.CIR.101.6.660 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Gao XM, Liu Y, White D, Su Y, Drew BG, Bruce CR, Kiriazis H, Xu Q, Jennings N, Bobik A, Febbraio MA, Kingwell BA, Bucala R, Fingerle-Rowson G, Dart AM, Morand EF, Du XJ (2011) Deletion of macrophage migration inhibitory factor protects the heart from severe ischemia-reperfusion injury: a predominant role of anti-inflammation. J Mol Cell Cardiol 50:991–999. doi: 10.1016/j.yjmcc.2010.12.022 PubMedCrossRefGoogle Scholar
  12. 12.
    Gu H, Neel BG (2003) The “Gab” in signal transduction. Trends Cell Biol 13:122–130. doi: 10.1016/S0962-8924(03)00002-3 PubMedCrossRefGoogle Scholar
  13. 13.
    Gu H, Saito K, Klaman LD, Shen J, Fleming T, Wang Y, Pratt JC, Lin G, Lim B, Kinet JP, Neel BG (2001) Essential role for Gab2 in the allergic response. Nature 412:186–190. doi: 10.1038/35084076 PubMedCrossRefGoogle Scholar
  14. 14.
    Hamacher-Brady A, Brady NR, Gottlieb RA (2006) The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy. Cardiovasc Drugs Ther 20:445–462. doi: 10.1007/s10557-006-0583-7 PubMedCrossRefGoogle Scholar
  15. 15.
    Haubner BJ, Neely GG, Voelkl JG, Damilano F, Kuba K, Imai Y, Komnenovic V, Mayr A, Pachinger O, Hirsch E, Penninger JM, Metzler B (2010) PI3Kgamma protects from myocardial ischemia and reperfusion injury through a kinase-independent pathway. PLoS One 5:e9350. doi: 10.1371/journal.pone.0009350 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Hausenloy DJ, Lecour S, Yellon DM (2011) Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 14:893–907. doi: 10.1089/ars.2010.3360 PubMedCrossRefGoogle Scholar
  17. 17.
    Heusch G (2013) Cardioprotection: chances and challenges of its translation to the clinic. Lancet 381:166–175. doi: 10.1016/S0140-6736(12)60916-7 PubMedCrossRefGoogle Scholar
  18. 18.
    Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi: 10.1161/CIRCULATIONAHA.108.805242 PubMedCrossRefGoogle Scholar
  19. 19.
    Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ (1996) A Grb2-associated docking protein in EGF- and insulin-receptor signaling. Nature 379:560–564. doi: 10.1038/379560a0 PubMedCrossRefGoogle Scholar
  20. 20.
    Holgado-Madruga M, Wong AJ (2003) Gab1 is an integrator of cell death versus cell survival signals in oxidative stress. Mol Cell Biol 23:4471–4484. doi: 10.1128/MCB.23.13.4471-4484.2003 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Ide T, Tsutsui H, Kinugawa S, Suematsu N, Hayashidani S, Ichikawa K, Utsumi H, Machida Y, Egashira K, Takeshita A (2000) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res 86:152–157. doi: 10.1161/01.RES.86.2.152 PubMedCrossRefGoogle Scholar
  22. 22.
    Itoh M, Yoshida Y, Nishida K, Narimatsu M, Hibi M, Hirano T (2000) Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation. Mol Cell Biol 20:3695–3704. doi: 10.1128/MCB.20.10.3695-3704.2000 PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21:83–86. doi: 10.1016/s0968-0004(96)20008-8 PubMedCrossRefGoogle Scholar
  24. 24.
    Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Role of glycogen synthase kinase-3 beta in cardioprotection. Circ Res 104:1240–1252. doi: 10.1172/JCI19906 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Kuramochi Y, Cote GM, Guo X, Lebrasseur NK, Cui L, Liao R, Sawyer DB (2004) Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J Biol Chem 279:51141–51147. doi: 10.1074/jbc.M509332200 PubMedCrossRefGoogle Scholar
  26. 26.
    Lips DJ, Bueno OF, Wilkins BJ, Purcell NH, Kaiser RA, Lorenz JN, Voisin L, Saba-El-Leil MK, Meloche S, Pouysségur J, Pagès G, De Windt LJ, Doevendans PA, Molkentin JD (2004) MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 109:1938–1941. doi: 10.1161/01.CIR.0000127126.73759.23 PubMedCrossRefGoogle Scholar
  27. 27.
    Liu Y, Rohrschneider LR (2002) The gift of Gab. FEBS Lett 515(1–3):1–7. doi: 10.1016/S0014-5793(02)02425-0 PubMedCrossRefGoogle Scholar
  28. 28.
    Lu Y, Xiong Y, Huo Y, Han J, Yang X, Zhang R, Zhu DS, Klein-Hessling S, Li J, Zhang X, Han X, Li Y, Shen B, He Y, Shibuya M, Feng GS, Luo J (2011) Grb-2-associated binder 1 (Gab1) regulates postnatal ischemic and VEGF-induced angiogenesis through the protein kinase A-endothelial NOS pathway. Proc Natl Acad Sci USA 108:2957–2962. doi: 10.1073/pnas.1009395108 PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Marone R, Cmiljanovic V, Giese B, Wymann MP (2008) Targeting phosphoinositide 3-kinase: moving towards therapy. Biochim Biophys Acta 1784:159–185. doi: 10.1016/j.bbapap.2007.10.003 PubMedCrossRefGoogle Scholar
  30. 30.
    Matsui T, Li L, Del Monte F, Fukui Y, Franke TF, Hajjar RJ, Rosenzweig A (1999) Adenoviral gene transfer of activated phosphatidylinositol 3′-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation 100:2373–2379. doi: 10.1161/01.CIR.100.23.2373 PubMedCrossRefGoogle Scholar
  31. 31.
    Matsui T, Rosenzweig A (2005) Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J Mol Cell Cardiol 38:63–71. doi: 10.1016/j.yjmcc.2004.11.00529 PubMedCrossRefGoogle Scholar
  32. 32.
    Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, Force TL, Franke TF, Hajjar RJ, Rosenzweig A (2001) Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 104:330–335. doi: 10.1161/01.CIR.104.3.3330 PubMedCrossRefGoogle Scholar
  33. 33.
    Michel MC, Li Y, Heusch G (2001) Mitogen-activated protein kinases in the heart. Naunyn-Schmiedebergs Arch Pharmacol 363:245–266. doi: 10.1007/s002100000363 PubMedCrossRefGoogle Scholar
  34. 34.
    Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609. doi: 10.1152/physrev.00024.2007 PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136. doi: 10.1161/01.CIR.74.5.1124 PubMedCrossRefGoogle Scholar
  36. 36.
    Nakaoka Y, Nishida K, Narimatsu M, Kamiya A, Minami T, Sawa H, Okawa K, Fujio Y, Koyama T, Maeda M, Sone M, Yamasaki S, Arai Y, Koh GY, Kodama T, Hirota H, Otsu K, Hirano T, Mochizuki N (2007) Gab family proteins are essential for postnatal maintenance of cardiac function via neuregulin-1/ErbB signaling. J Clin Invest 117:1771–1781. doi: 10.1172/JCI30651 PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Nishida K, Hirano T (2003) The role of Gab family scaffolding adapter proteins in the signal transduction of cytokine and growth factor receptors. Cancer Sci 94:1029–1033. doi: 10.1111/j.1349-7006.2003.tb01396.x PubMedCrossRefGoogle Scholar
  38. 38.
    Nishida K, Wang L, Morii E, Park SJ, Narimatsu M, Itoh S, Yamasaki S, Fujishima M, Ishihara K, Hibi M, Kitamura Y, Hirano T (2002) Requirement of Gab2 for mast cell development and KitL/c-Kit signaling. Blood 99:1866–1869. doi: 10.1182/blood.V99.5.1866 PubMedCrossRefGoogle Scholar
  39. 39.
    Qi D, Hu X, Wu X, Merk M, Leng L, Bucala R, Young LH (2009) Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion. J Clin Investig 119:3807–3816. doi: 10.1172/JCI39738 PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Schulz R, Belosjorow S, Gres P, Jansen J, Michel MC, Heusch G (2002) p38 MAP kinase is a mediator of ischemic preconditioning in pigs. Cardiovasc Res 55:690–700. doi: 10.1016/S0008-6363(02)00319-X PubMedCrossRefGoogle Scholar
  41. 41.
    Reed R, Potter B, Smith E, Jadhav R, Villalta P, Jo H, Rocic P (2009) Redox-sensitive Akt and Src regulate coronary collateral growth in metabolic syndrome. Am J Physiol Heart Circ Physiol 296:H1811–H1821. doi: 10.1152/ajpheart.00920.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Ribichini F, Wijns W (2002) Acute myocardial infarction: reperfusion treatment. Heart 88:298–305. doi: 10.1136/heart.88.3.298 PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Sachs M, Brohmann H, Zechner D, Müller T, Hülsken J, Walther I, Schaeper U, Birchmeier C, Birchmeier W (2000) Essential role of Gab1 for signaling by the c-Met receptor in vivo. J Cell Biol 150:1375–1384. doi: 10.1083/jcb.150.6.1375 PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Shioyama W, Nakaoka Y, Higuchi K, Minami T, Taniyama Y, Nishida K, Kidoya H, Sonobe T, Naito H, Arita Y, Hashimoto T, Kuroda T, Fujio Y, Shirai M, Takakura N, Morishita R, Yamauchi-Takihara K, Kodama T, Hirano T, Mochizuki N, Komuro I (2011) Docking protein Gab1 is an essential component of postnatal angiogenesis after ischemia via HGF/c-met signaling. Circ Res 108:664–675. doi: 10.1161/CIRCRESAHA.110.232223 PubMedCrossRefGoogle Scholar
  45. 45.
    Singh SS, Kang PM (2011) Mechanisms and inhibitors of apoptosis in cardiovascular diseases. Curr Pharm Des 17:1783–1793. doi: 10.2174/138161211796390994 PubMedCrossRefGoogle Scholar
  46. 46.
    Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, Schulz R, Heusch G (2008) Ischemic postconditioning in pigs: no causal role for risk activation. Circ Res 104:15–18. doi: 10.1161/CIRCRESAHA.108.186429 PubMedCrossRefGoogle Scholar
  47. 47.
    Sun Y, Yuan J, Liu H, Shi Z, Baker K, Vuori K, Wu J, Feng GS (2004) Role of Gab1 in UV-induced c-Jun NH2-terminal kinase activation and cell apoptosis. Mol Cell Biol 24:1531–1539. doi: 10.1128/MCB.24.4.1531-1539.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Timolati F, Ott D, Pentassuglia L, Giraud MN, Perriard JC, Suter TM, Zuppinger C (2006) Neuregulin-1 beta attenuates doxorubicin-induced alterations of excitation-contraction coupling and reduces oxidative stress in adult rat cardiomyocytes. J Mol Cell Cardiol 41:845–854. doi: 10.1016/j.yjmcc.2006.08.002 PubMedCrossRefGoogle Scholar
  49. 49.
    Topol EJ (2003) Current status and future prospects for acute myocardial infarction therapy. Circulation 108:I6–I13. doi: 10.1161/01.CIR.0000086950.37612.7b
  50. 50.
    Wada T, Nakashima T, Oliveira-dos-Santos AJ, Gasser J, Hara H, Schett G, Penninger JM (2005) The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat Med 11:394–399. doi: 10.1038/nm1203 PubMedCrossRefGoogle Scholar
  51. 51.
    Wang J, Xu N, Feng X, Hou N, Zhang J, Cheng X, Chen Y, Zhang Y, Yang X (2005) Targeted disruption of Smad4 in cardiomyocytes results in cardiac hypertrophy and heart failure. Circ Res 97:821–828. doi: 10.1161/01.RES.0000185833.42544.06 PubMedCrossRefGoogle Scholar
  52. 52.
    Wang X, McCullough KD, Franke TF, Holbrook NJ (2000) Epidermal growth factor receptor-dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem 275:14624–14631. doi: 10.1074/jbc.275.19.14624 PubMedCrossRefGoogle Scholar
  53. 53.
    Wang Y (2007) Mitogen-activated protein kinases in heart development and diseases. Circulation 116:1413–1423. doi: 10.1161/CIRCULATIONAHA.106.679589 PubMedCrossRefGoogle Scholar
  54. 54.
    Weng T, Mao F, Wang Y, Sun Q, Li R, Yang G, Zhang X, Luo J, Feng GS, Yang X (2010) Osteoblastic molecular scaffold Gab1 is required for maintaining bone homeostasis. J Cell Sci 123:682–689. doi: 10.1242/jcs.058396 PubMedCrossRefGoogle Scholar
  55. 55.
    Xiao H, Ma X, Feng W, Fu Y, Lu Z, Xu M, Shen Q, Zhu Y, Zhang Y (2010) Metformin attenuates cardiac fibrosis by inhibiting the TGF beta1-Smad3 signalling pathway. Cardiovasc Res 87:504–513. doi: 10.1093/cvr/cvq066 PubMedCrossRefGoogle Scholar
  56. 56.
    Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135. doi: 10.1056/NEJMra071667 PubMedCrossRefGoogle Scholar
  57. 57.
    Yue TL, Wang C, Gu JL, Ma XL, Kumar S, Lee JC, Feuerstein GZ, Thomas H, Maleeff B, Ohlstein EH (2000) Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circ Res 86:692–699. doi: 10.1161/01.RES.86.6.692 PubMedCrossRefGoogle Scholar
  58. 58.
    Zhao J, Wang W, Ha CH, Kim JY, Wong C, Redmond EM, Hamik A, Jain MK, Feng GS, Jin ZG (2011) Endothelial Grb2-associated binder 1 is crucial for postnatal angiogenesis. Arterioscler Thromb Vasc Biol 31:1016–1023. doi: 10.1161/ATVBAHA.111.224493 PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP (2001) Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci USA 98:1607–1612. doi: 10.1073/pnas.98.4.1607 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lulu Sun
    • 1
  • Chao Chen
    • 2
  • Beibei Jiang
    • 1
  • Yanli Li
    • 1
  • Qiuping Deng
    • 1
  • Min Sun
    • 2
  • Xiangbo An
    • 2
  • Xiao Yang
    • 3
  • Ying Yang
    • 1
  • Rongli Zhang
    • 1
  • Yao Lu
    • 1
  • De-Sheng Zhu
    • 4
  • Yingqing Huo
    • 1
  • Gen-Sheng Feng
    • 5
  • Youyi Zhang
    • 2
    • 6
    Email author
  • Jincai Luo
    • 1
    Email author
  1. 1.Laboratory of Vascular Biology, Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular MedicinePeking UniversityBeijingChina
  2. 2.Third Hospital, Peking University and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides Ministry of HealthBeijingChina
  3. 3.State Key Laboratory of ProteomicsInstitute of Biotechnology and Genetic Laboratory of Development and DiseaseBeijingChina
  4. 4.Animal CenterPeking UniversityBeijingChina
  5. 5.Department of Pathology, School of MedicineUniversity of CaliforniaSan DiegoUSA
  6. 6.Institute of Vascular MedicinePeking University Third HospitalBeijingChina

Personalised recommendations